Quinolones (nalidixic acid--NAL, norfloxacin--NOR, ciprofloxacin--CIP and gatifloxacin--GAT) were tested against Escherichia coli isolated from urine (385 patient samples) by disk diffusion (DD) and agar dilution (AD) methods. Fifty-three samples (13.8%) were classified as resistant to at least one of the quinolones tested. CIP and NOR susceptibilities were the same (91.4%) and they were similar to GAT (92.7%). Susceptibility to NAL, detected by the disk diffusion method, was used to predict susceptibility to NOR, CIP and GAT by the agar dilution method. The sensitivity and specificity of NAL were 100% and 95%, respectively. Twelve samples were analyzed for mutations in the quinolone resistance-determining region (QRDR) of the gyrA and parC genes. Sequencing of these genes failed to find any mutations in the quinolone-sensitive isolates. However, three mutations were observed in the isolates resistant to all the quinolones tested--two in gyrA and one in parC. A single mutation in gyrA was found in the strains that were resistant to nalidixic acid but fluoroquinolone-sensitive. These findings support the suggestion that NAL could be used as a marker for susceptibility to fluoroquinolones in routine microbiology laboratories. The overall resistance rate to quinolones in the present study was 13.8%, which is higher than that observed in other studies carried out in developed countries. Our findings serve as a warning that resistance to this group of antimicrobial agents is increasing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.