Shape memory alloys (SMAs) are smart materials that change their crystalline structures when subjected to heat or tension, resulting in a macroscopic deformation. When applied to actuators, SMAs present a remarkable load–weight ratio and flexibility, making them suitable for diverse applications. However, challenges such as their energy consumption, nonlinear control, and low displacement must be considered. This paper presents a new strategy for improving the total displacement while adding neither supplementary SMA wires nor complex external devices. In addition, a novel control strategy is proposed to improve the nonlinearity of SMAs’ behavior. A hoist system was developed to linearly increase the displacement with the number of pulleys and wire turns used. The design also used parallel actuation to increase the load capacity. The actuator presented a high load capacity with reduced weight, lifting more than 100 times its own mass, with a low-cost and robust external system. The simplicity of the actuator’s control and production and its lightness make it a suitable option for a wide range of applications, including wearable exoskeletons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.