Summary Background Cerebral microbleeds are a neuroimaging biomarker of stroke risk. A crucial clinical question is whether cerebral microbleeds indicate patients with recent ischaemic stroke or transient ischaemic attack in whom the rate of future intracranial haemorrhage is likely to exceed that of recurrent ischaemic stroke when treated with antithrombotic drugs. We therefore aimed to establish whether a large burden of cerebral microbleeds or particular anatomical patterns of cerebral microbleeds can identify ischaemic stroke or transient ischaemic attack patients at higher absolute risk of intracranial haemorrhage than ischaemic stroke. Methods We did a pooled analysis of individual patient data from cohort studies in adults with recent ischaemic stroke or transient ischaemic attack. Cohorts were eligible for inclusion if they prospectively recruited adult participants with ischaemic stroke or transient ischaemic attack; included at least 50 participants; collected data on stroke events over at least 3 months follow-up; used an appropriate MRI sequence that is sensitive to magnetic susceptibility; and documented the number and anatomical distribution of cerebral microbleeds reliably using consensus criteria and validated scales. Our prespecified primary outcomes were a composite of any symptomatic intracranial haemorrhage or ischaemic stroke, symptomatic intracranial haemorrhage, and symptomatic ischaemic stroke. We registered this study with the PROSPERO international prospective register of systematic reviews, number CRD42016036602. Findings Between Jan 1, 1996, and Dec 1, 2018, we identified 344 studies. After exclusions for ineligibility or declined requests for inclusion, 20 322 patients from 38 cohorts (over 35 225 patient-years of follow-up; median 1·34 years [IQR 0·19–2·44]) were included in our analyses. The adjusted hazard ratio [aHR] comparing patients with cerebral microbleeds to those without was 1·35 (95% CI 1·20–1·50) for the composite outcome of intracranial haemorrhage and ischaemic stroke; 2·45 (1·82–3·29) for intracranial haemorrhage and 1·23 (1·08–1·40) for ischaemic stroke. The aHR increased with increasing cerebral microbleed burden for intracranial haemorrhage but this effect was less marked for ischaemic stroke (for five or more cerebral microbleeds, aHR 4·55 [95% CI 3·08–6·72] for intracranial haemorrhage vs 1·47 [1·19–1·80] for ischaemic stroke; for ten or more cerebral microbleeds, aHR 5·52 [3·36–9·05] vs 1·43 [1·07–1·91]; and for ≥20 cerebral microbleeds, aHR 8·61 [4·69–15·81] vs 1·86 [1·23–2·82]). However, irrespective of cerebral microbleed anatomical distribution or burden, the rate of ischaemic stroke exceeded that of intracranial haemorrhage (for ten or more cerebral microbleeds, 64 ischaemic strokes [95% CI 48–84] per 1000 patient-years vs 27 intracranial haemorrhages [17–41] per 10...
There is great interest about the therapeutic potentialities of transcutaneous vagus nerve stimulation (tVNS) applied to neuropsychiatric disorders. However, the mechanisms of action of tVNS and its impact on cortical excitability are unclear. To this regard, transcranial magnetic stimulation (TMS) can be useful because it is able of evaluating non-invasively excitatory and inhibitory circuitry of the human cortex. Aim of the present study is to investigate the effects of tVNS on cerebral cortex excitability in healthy volunteers by means of TMS. Ten healthy subjects participated in this randomized placebo-controlled double-blind study. Real tVNS was administered at left external acoustic meatus, while sham stimulation was performed at left ear lobe, both of them for 60 min. We evaluated motor thresholds, motor evoked potential amplitude, recruitment curves, and short-interval intracortical inhibition (SICI) in right and left motor cortex. Such parameters were evaluated before and 60 min after the exposure to tVNS, for both the real and the sham stimulation. Cardiovascular parameters were monitored during the stimulation. A generalized linear model for repeated measures was implemented to assess the effect of time and stimulation type on cardiovascular and neurophysiological variables. SICI, a double-pulse TMS paradigm informative of GABA-A activity, was significantly increased in right motor cortex after real tVNS. Other neurophysiological parameters, as well as cardiovascular variables, remained unchanged. Our findings confirm that tVNS is a safe and effective way to stimulate vagus nerve and provide innovative data about the possible mechanisms of action that supports the potential therapeutic application of this technique.
Systemic Lupus Erythematosus (SLE) is a connective tissue disease that involves multiple organs. Ocular structures and visual pathways can be affected in SLE because of disease-related eye involvement or drug toxicity. All the part of the eye may be interested with an external, anterior involvement, responsible of the dry eye disease, or posterior (retina) and neuro-ophtalmic manifestations. Retinopathy in SLE is suggestive of high disease activity being a marker of poor visual outcome and prognosis for survival. The early diagnosis is thus the key to a better management and successful treatment. Antimalarial drugs are the cornerstone of SLE treatment and recently the American Academy of Ophthalmology updated the recommendations for hydroxychloroquine retinal toxicity screening which includes the standard automated visual fields and the spectral domain optical coherent tomography. More recently new imaging techniques have been investigated to assess retinal function and reveal subclinical eye involvement. In this review we focalize on the evidence of eye manifestations in SLE, the eye drug toxicity related to antimalarial agents and steroids, and the methods employed for the eye screening. Moreover, the future perspectives on new techniques, such as the optical coherence tomography angiography, are dissected giving new insights on evaluation of microvasculature of the retina and choroid in SLE.
Research in context panel: 445Identifying people at highest risk of ICH may facilitate timely and accurate prognostication to allow mitigation of reversible risk factors for bleeding (e.g. intensive blood pressure control), and selection of participants for clinical trials. While more complex combinations of clinical, biochemical, and radiological markers might further improve stroke risk prediction, balancing accuracy with simplicity will remain important.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.