Noninvasive brain stimulation (NIBS) techniques can be used to monitor and modulate the excitability of intracortical neuronal circuits. Long periods of cortical stimulation can produce lasting effects on brain function, paving the way for therapeutic applications of NIBS in chronic neurological disease. The potential of NIBS in stroke rehabilitation has been of particular interest, because stroke is the main cause of permanent disability in industrial nations, and treatment outcomes often fail to meet the expectations of patients. Despite promising reports from many clinical trials on NIBS for stroke recovery, the number of studies reporting a null effect remains a concern. One possible explanation is that the interhemispheric competition model--which posits that suppressing the excitability of the hemisphere not affected by stroke will enhance recovery by reducing interhemispheric inhibition of the stroke hemisphere, and forms the rationale for many studies--is oversimplified or even incorrect. Here, we critically review the proposed mechanisms of synaptic and functional reorganization after stroke, and suggest a bimodal balance-recovery model that links interhemispheric balancing and functional recovery to the structural reserve spared by the lesion. The proposed model could enable NIBS to be tailored to the needs of individual patients.
In early 2020, Italy struggled with an unprecedented health emergency related to the COVID-19 pandemic. Medical care of chronic neurological diseases, such as epilepsy, is being sorely neglected. In this national survey, we aimed at understanding the impact of COVID-19 lockdown on the care of people with epilepsy (PwE) and identifying PwE risk factors for seizure worsening to direct telemedicine efforts. Methods: We administered a 48-items online survey (published on April 11, 2020) including socio-demographic, epilepsy-related, and psychometric variables (BDI-II for depression, GAD-7 for anxiety, and PSQI for sleep) to PwE and people without epilepsy (PwoE). Regression analysis identified predictors of seizure worsening. Results: We collected responses from 456 PwE (344 females) and 472 PwoE (347 females). Outpatient examinations of PwE were postponed in 95% of cases. One-third of PwE complained of issues with epilepsy management, but only 71% of them reached the treating physician and solved their problems. PwE had worse depressive and anxiety symptoms (higher BDI-II and GAD-7 scores; p < 0.001) than PwoE. Sleep quality was equally compromised in both groups (47 and 42%). Sixty-seven PwE (18%) reported seizure worsening, which was best explained by the number of anti-seizure medications (ASM) of chronic therapy and the severity of sleep disorder. Conclusions: During the current COVID-19 pandemic, a significant percentage of PwE experienced difficulties in follow-up and a seizure number increase, in particular those chronically taking more ASMs and with poor sleep quality. This dramatic experience outlines the urgent need for validation and implementation of telemedicine services for epileptic patients in order to provide regular follow-up.
The primary motor cortex (M1) area recruitment enlarges while learning a finger tapping sequence. Also M1 excitability increases during procedural consolidation. Our aim was to investigate whether increasing M1 excitability by anodal transcranial DC stimulation (AtDCS) when procedural consolidation occurs was able to induce an early consolidation improvement. Forty-seven right-handed healthy participants were trained in a nine-element serial finger tapping task (SFTT) executed with the left hand. Random series blocks were interspersed with training series blocks. Anodal or sham tDCS was administered over the right M1 after the end of the training session. After stimulation, the motor skills of both trained and a new untrained sequential series blocks were tested again. For each block, performance was estimated as the median execution time of correct series. Early consolidation of the trained series, assessed by the performance difference between the first block after and the last block before stimulation normalized by the random, was enhanced by anodal and not by sham tDCS. Stimulation did not affect random series execution. No stimulation effect was found on the on-line learning of the trained and new untrained series. Our results suggest that AtDCS applied on M1 soon after training improves early consolidation of procedural learning. Our data highlight the importance of neuromodulation procedures for understanding learning processes and support their use in the motor rehabilitation setting, focusing on the timing of the application.
The brain is a self-organizing system which displays self-similarities at different spatial and temporal scales. Thus, the complexity of its dynamics, associated to efficient processing and functional advantages, is expected to be captured by a measure of its scale-free (fractal) properties. Under the hypothesis that the fractal dimension (FD) of the electroencephalographic signal (EEG) is optimally sensitive to the neuronal dysfunction secondary to a brain lesion, we tested the FD’s ability in assessing two key processes in acute stroke: the clinical impairment and the recovery prognosis. Resting EEG was collected in 36 patients 4–10 days after a unilateral ischemic stroke in the middle cerebral artery territory and 19 healthy controls. National Health Institute Stroke Scale (NIHss) was collected at T0 and 6 months later. Highuchi FD, its inter-hemispheric asymmetry (FDasy) and spectral band powers were calculated for EEG signals. FD was smaller in patients than in controls (1.447±0.092 vs 1.525±0.105) and its reduction was paired to a worse acute clinical status. FD decrease was associated to alpha increase and beta decrease of oscillatory activity power. Larger FDasy in acute phase was paired to a worse clinical recovery at six months. FD in our patients captured the loss of complexity reflecting the global system dysfunction resulting from the structural damage. This decrease seems to reveal the intimate nature of structure-function unity, where the regional neural multi-scale self-similar activity is impaired by the anatomical lesion. This picture is coherent with neuronal activity complexity decrease paired to a reduced repertoire of functional abilities. FDasy result highlights the functional relevance of the balance between homologous brain structures’ activities in stroke recovery.
BackgroundThe restoration of complex hand functions by creating a novel bidirectional link between the nervous system and a dexterous hand prosthesis is currently pursued by several research groups. This connection must be fast, intuitive, with a high success rate and quite natural to allow an effective bidirectional flow of information between the user's nervous system and the smart artificial device. This goal can be achieved with several approaches and among them, the use of implantable interfaces connected with the peripheral nervous system, namely intrafascicular electrodes, is considered particularly interesting.MethodsThin-film longitudinal intra-fascicular electrodes were implanted in the median and ulnar nerves of an amputee's stump during a four-week trial. The possibility of decoding motor commands suitable to control a dexterous hand prosthesis was investigated for the first time in this research field by implementing a spike sorting and classification algorithm.ResultsThe results showed that motor information (e.g., grip types and single finger movements) could be extracted with classification accuracy around 85% (for three classes plus rest) and that the user could improve his ability to govern motor commands over time as shown by the improved discrimination ability of our classification algorithm.ConclusionsThese results open up new and promising possibilities for the development of a neuro-controlled hand prosthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.