The present work is concerned with the manganese complexes of 5,10,15,20-tetraphenylporphyrin and of 5,10,15,20-tetra(3-hydroxyphenyl)porphyrin, which were prepared by metallation of the corresponding porphyrin ligands, and the study of their spectroscopic and photophysical behavior under strongly acidic and alkaline conditions. The second objective was to obtain and study some new hybrid materials, with special optoelectronic and surface properties, by impregnation of silica gels obtained by one step acid and by two steps acid-base catalysis with these Mn-porphyrins. The resulting nanomaterials exhibited interesting bathochromic and hyperchromic effects of their second band in the emission spectra in comparison with the Mn-porphyrins and also they have distinct orientation of the aggregates on surfaces, as shown by AFM images, making them useful for applications in medicine, formulation of sensors and for environmental-friendly catalysts for photodegradation of organic compounds.
New ionic Cu(i) coordination complexes with 4,4′-bisubstituted-2,2′-biquinolines showing low temperature lamello-columnar and columnar hexagonal thermotropic mesomorphism, depending on the substituents, are synthesized and characterized.
The synthesis, as well as the mesomorphic and electrochemical properties, of a hetero-bimetallic coordination complex able to self-assemble into a columnar liquid crystalline phase is reported herein. The mesomorphic properties were investigated by polarized optical microscopy (POM), differential scanning calorimetry (DSC) and Powder X-ray diffraction (PXRD) analysis. Electrochemical properties were explored by cyclic voltammetry (CV), relating the hetero-bimetallic complex behaviour to previously reported analogous monometallic Zn(II) compounds. The obtained results highlight how the presence of the second metal centre and the supramolecular arrangement in the condensed state pilot the function and properties of the new hetero-bimetallic Zn/Fe coordination complex.
The synthesis and structural characterization of a new liquid crystalline coordination complex based on pentacoordinated Zn(II) metal centre with the coordination fulfilled by the tridentate chelating N^N^N 2,2’;6’,2”-terpyridine ligand and two monoanionic gallates decorated with several long alkyl chains is described. The mesomorphic properties were accurately investigated by small- and wide-angle X-ray scattering studies. Despite the bulky coordination around the metal centre, the complex self-organizes into a smectic phase and, based on the structural and geometrical parameters, a model for the supramolecular organization in the liquid crystalline phase is proposed. Electrochemical investigations showed the importance of the molecular structure of the coordination complex in enhancing its aqueous sensing capacities: the bulky organic ligands form an organic shell separating the metal centres and favouring the redox system through their reduction followed by stripping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.