Virtual screening (VS) is a powerful technique for identifying hit molecules as starting points for medicinal chemistry. The number of methods and softwares which use the ligand and target-based VS approaches is increasing at a rapid pace. What, however, are the real advantages and disadvantages of the VS technology and how applicable is it to drug discovery projects? This review provides a comprehensive appraisal of several VS approaches currently available. In the first part of this work, an overview of the recent progress and advances in both ligand-based VS (LBVS) and structure-based VS (SBVS) strategies highlighting current problems and limitations will be provided. Special emphasis will be given to in silico chemogenomics approaches which utilize annotated ligand-target as well as protein-ligand interaction databases and which could predict or reveal promiscuous binding and polypharmacology, the knowledge of which would help medicinal chemists to design more potent clinical candidates with fewer side effects. In the second part, recent case studies (all published in the last two years) will be discussed where the VS technology has been applied successfully. A critical analysis of these case studies provides a good platform in order to estimate the applicability of various VS strategies in the new lead identification and optimization.
The cell division cycle 25 (CDC25) family of proteins is a group of highly conserved dual-specificity phosphatases. They are key regulators of normal cell division and the cell response to DNA damage, and play a fundamental role in transitions between cell cycle phases during normal cell division, via the activation of CdK/cyclin complexes. Their abnormal expression, detected in a number of tumors, often correlated with a poor clinical prognosis, implies that their dysregulation is involved in malignant transformation. Thus, inhibition of these proteins represents an attractive therapeutic target in oncology, as evidenced from many patents and papers published on the subject in recent years. Hence, this review aims to provide an overview of recent developments in the field of CDC25 phosphatase inhibitor design since 2008.
Some Cdc25 inhibitors have suppressed in vivo the growth of human tumor xenografts in animals; this confirmed the validity of using Cdc25 phosphatase inhibition as an anticancer strategy, but side effects and toxicity remain to be investigated.
Cell division cycle 25 (Cdc25) proteins are highly conserved dual specificity phosphatases that regulate cyclin-dependent kinases and represent attractive drug targets for anticancer therapies. To discover more potent and diverse inhibitors of Cdc25 biological activity, virtual screening was performed by docking 2.1 million compounds into the Cdc25B active site. An initial subset of top-ranked compounds was selected and assayed, and 15 were found to have enzyme inhibition activity at micromolar concentration. Among these, four structurally diverse inhibitors with a different inhibition profile were found to inhibit human MCF-7, PC-3, and K562 cancer cell proliferation and significantly affect the cell cycle progression. A subsequent hierarchical similarity search with the most active reversible Cdc25B inhibitor found led to the identification of an additional set of 19 ligands, three of which were confirmed as Cdc25B inhibitors with IC(50) values of 7.9, 4.2, and 9.9 μM, respectively.
The signal transducers and activators of transcription (STATs) include a class of cytoplasmic signaling proteins whose role in the regulation of cell growth and survival is mediated by phosphorylation of a critical tyrosine residue within the STAT protein. This occurs in response to cytokines and growth factors modulating the expression of specific target genes. In particular, phosphorylation induces STAT:STAT dimer formation between two monomers, via reciprocal phosphoTyr (pTyr)-SH2 domain interactions. To date, seven members of the STAT family, all with different roles, have been identified in mammals. After dimerization, phosphorylated STATs enter the nucleus and, working co-ordinately with other transcriptional co-activators and transcription factors, induce increased transcriptional initiation. In healthy human and animal cells, ligand-dependent activation of STATs is a transient process, lasting for several minutes to several hours. In contrast, in many cancerous cell lines and tumors, where growth factor dysregulation is frequently at the heart of cellular transformation, the STAT proteins (in particular STAT1, 3 and 5) are persistently tyrosine-phosphorylated or activated; abnormal levels of STAT3 activation have been observed in breast, ovarian, prostate, hematological and head and neck cancer cell lines. Thus, in this review, we examine the most important classes of agents designed to disrupt STAT3 signaling, with particular regard to STAT3 dimerization inhibitors, which could play a significant role in the future of cancer and adjuvant cancer therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.