Background
When foods are processed or cooked, many chemical reactions occur involving a wide range of metabolites including sugars, amino acids and lipids. These chemical processes often lead to the formation of volatile aroma compounds that can make food tastier or may introduce off-flavours. Metabolomics tools are only now being used to study the formation of these flavour compounds in order to understand better the beneficial and less beneficial aspects of food processing.
Aim of review
To provide a critical overview of the diverse MS-based studies carried out in recent years in food metabolomics and to review some biochemical properties and flavour characteristics of the different groups of aroma-related metabolites. A description of volatiles from processed foods, and their relevant chemical and sensorial characteristics is provided. In addition, this review also summarizes the formation of the flavour compounds from their precursors, and the interconnections between Maillard reactions and the amino acid, lipid, and carbohydrate degradation pathways.
Key scientific concepts of review
This review provides new insights into processed ingredients and describes how metabolomics will help to enable us to produce, preserve, design and distribute higher-quality foods for health promotion and better flavour.
Soy sauce is a fermented product,
and its flavor is a complex mixture
of individual senses which, in combination, create a strong palatable
condiment for many Eastern and Western dishes. This Review focuses
on our existing knowledge of the chemical compounds present in soy
sauce and their potential relevance to the flavor profile. Taste is
dominated by umami and salty sensations. Free amino acids, nucleotides,
and small peptides are among the most important taste-active compounds.
Aroma is characterized by caramel-like, floral, smoky, malty, and
cooked potato-like odors. Aroma-active volatiles are chemically diverse
including acids, alcohols, aldehydes, esters, furanones, pyrazines,
and S-compounds. The origin of all compounds relates to both the raw
ingredients and starter cultures used as well as the parameters applied
during production. We are only just starting to help develop innovative
studies where we can combine different analytical platforms and chemometric
analysis to link flavor attributes to chemical composition.
Strigolactones (SLs) are rhizosphere signalling molecules exuded by plants that induce seed germination of root parasitic weeds and hyphal branching of arbuscular mycorrhiza. They are also phytohormones regulating plant architecture. MORE AXILLARY GROWTH 1 (MAX1) and its homologs encode cytochrome P450 (CYP) enzymes that catalyse the conversion of the strigolactone precursor carlactone to canonical strigolactones in rice (Oryza sativa), and to an SL-like compound in Arabidopsis. Here, we characterized the tomato (Solanum lycopersicum) MAX1 homolog, SlMAX1. The targeting induced local lesions in genomes method was used to obtain Slmax1 mutants that exhibit strongly reduced production of orobanchol, solanacol and didehydro-orobanchol (DDH) isomers. This results in a severe strigolactone mutant phenotype in vegetative and reproductive development. Transient expression of SlMAX1 - together with SlD27, SlCCD7 and SlCCD8 - in Nicotiana benthamiana showed that SlMAX1 catalyses the formation of carlactonoic acid from carlactone. Plant feeding assays showed that carlactone, but not 4-deoxy-orobanchol, is the precursor of orobanchol, which in turn is the precursor of solanacol and two of the three DDH isomers. Inhibitor studies suggest that a 2-oxoglutarate-dependent dioxygenase is involved in orobanchol biosynthesis from carlactone and that the formation of solanacol and DDH isomers from orobanchol is catalysed by CYPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.