Employing "phosphorylating" submitochondrial particles as the source of pyridine nucleotide transhydrogenase, the occurrence of an energy-linked NADH----NADP+ transhydrogenation in the adult cestode Hymenolepis diminuta was demonstrated. The isolated particles displayed rotenone-sensitive NADH utilization and the reversible transhydrogenase, with the NADPH----NAD+ transhydrogenation being more prominent. Although not inhibiting the NADPH----NAD+ reaction, rotenone, but not oligomycin, inhibited the catalysis of NADH----NADP+ transhydrogenation. In the presence of rotenone, Mg2+ plus ATP stimulated by more than 3-fold NADH----NADP+ transhydrogenation. This stimulation was ATP specific and was abolished by EDTA or oligomycin. Succinate was essentially without effect on the NADH----NADP+ reaction. These data demonstrate the occurrence of an energy-linked transhydrogenation between NADH and NADP+ with energization resulting from either electron transport-dependent NADH oxidation or ATP utilization via the phosphorylating mechanism in accord with the preparation of "phosphorylating" particles. This is the first demonstration of an energy-linked transhydrogenation in the parasitic helminths and apparently in the invertebrates generally.
Midgut mitochondria from fifth larval instar Manduca sexta exhibited a transhydrogenase that catalyzes the following reversible reaction: NADPH + NAD(+) <--> NADP(+) + NADH. The NADPH-forming transhydrogenation occurred as a nonenergy- and energy-linked activity. Energy for the latter was derived from the electron transport-dependent utilization of NADH or succinate, or from Mg++-dependent ATP hydrolysis by ATPase. The NADH-forming and all of the NADPH-forming reactions appeared optimal at pH 7.5, were stable to prolonged dialysis, and displayed thermal lability. N,N'-dicyclohexylcarbodiimide (DCCD) inhibited the NADPH --> NAD(+) and energy-linked NADH --> NADP(+) transhydrogenations, but not the nonenergy-linked NADH --> NADP(+) reaction. Oligomycin only inhibited the ATP-dependent energy-linked activity. The NADH-forming, nonenergy-linked NADPH-forming, and the energy-linked NADPH-forming activities were membrane-associated in M. sexta mitochondria. This is the first demonstration of the reversibility of the M. sexta mitochondrial transhydrogenase and, more importantly, the occurrence of nonenergy-linked and energy-linked NADH --> NADP(+) transhydrogenations. The potential relationship of the transhydrogenase to the mitochondrial, NADPH-utilizing ecdysone-20 monooxygenase of M. sexta is considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.