Nuclear and G-protein coupled receptors are considered major targets for drug discovery. FXR and GP-BAR1, two bile acid-activated receptors, have gained increasing consideration as druggable receptors. Because endogenous bile acids often target both receptor families, the development of selective ligands has been proven difficult, exposing patients to side effects linked to an unwanted activation of one of the two receptors. In the present study, we describe a novel library of semisynthetic bile acid derivatives obtained by modifications on the cholane scaffold. The pharmacological characterization of this library led to the discovery of 7α-hydroxy-5β-cholan-24-sulfate (7), 6β-ethyl-3α,7β-dihydroxy-5β-cholan-24-ol (EUDCOH, 26), and 6α-ethyl-3α, 7α-dihydroxy-24-nor-5β-cholan-23-ol (NorECDCOH, 30) as novel ligands for FXR and GP-BAR1 that might hold utility in the treatment of FXR and GP-BAR1 mediated disorders.
Two unprecedented cyclic peptides, solomonamides A and B, were isolated from the marine sponge Theonella swinhoei. The structures were elucidated on the basis of comprehensive 1D and 2D NMR analysis and high-resolution mass spectrometry. A combined approach, involving Marfey's method, QM J based analysis, and DFT J/(13)C calculations, was used for establishing the absolute configuration of the entire molecule. Solomonamide A showed in vivo anti-inflammatory activity.
The finding of new PXR modulators as potential leads for treatment of human disorders characterized by dysregulation of innate immunity and with inflammation is of wide interest. In this paper, we report the identification of the first example of natural marine PXR agonists, solomonsterols A and B, from a Theonella swinhoei sponge. The structures were determined by interpretation of NMR and ESIMS data, and the putative binding mode to PXR has been obtained through docking calculations.
Bile acids are signaling molecules interacting with the nuclear receptor FXR and the G-protein coupled receptor 1 (GP-BAR1/TGR5). GP-BAR1 is a promising pharmacological target for the treatment of steatohepatitis, type 2 diabetes, and obesity. Endogenous bile acids and currently available semisynthetic bile acids are poorly selective toward GP-BAR1 and FXR. Thus, in the present study we have investigated around the structure of UDCA, a clinically used bile acid devoid of FXR agonist activity, to develop a large family of side chain modified 3α,7β-dihydroxyl cholanoids that selectively activate GP-BAR1. In vivo and in vitro pharmacological evaluation demonstrated that administration of compound 16 selectively increases the expression of pro-glucagon 1, a GP-BAR1 target, in the small intestine, while it had no effect on FXR target genes in the liver. Further, compound 16 results in a significant reshaping of bile acid pool in a rodent model of cholestasis. These data demonstrate that UDCA is a useful scaffold to generate novel and selective steroidal ligands for GP-BAR1.
In this paper we report the isolation and the molecular characterization of a new class of PPARγ ligands from the marine environment. Biochemical characterization of a library of 13 oxygenated polyketides isolated from the marine sponge Plakinastrella mamillaris allowed the discovery of gracilioether B and plakilactone C as selective PPARγ ligands in transactivation assays. Both agents covalently bind to the PPARγ ligand binding domain through a Michael addition reaction involving a protein cysteine residue and the α,β-unsaturated ketone in their side chains. Additionally, gracilioether C is a noncovalent agonist for PPARγ, and methyl esters 1 and 2 are noncovalent antagonists. Structural requirements for the interaction of these agents within the PPARγ ligand binding domain were obtained by docking analysis. Gracilioether B and plakilactone C regulate the expression of PPARγ-dependent genes in the liver and inhibit the generation of inflammatory mediators by macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.