The use of metaproteomics for studying the human gut microbiota can shed light on the taxonomic profile and the functional role of the microbial community. Nevertheless, methods for extracting proteins from stool samples continue to evolve, in the pursuit of optimal protocols for moistening and dispersing the stool sample and for disrupting microbial cells, which are two critical steps for ensuring good protein recovery. Here, we evaluated different stool sample processing (SSP) and microbial cell disruption methods (CDMs). The combination of a longer disintegration period of the stool sample in a tube rotator with sonication increased the overall number of identified peptides and proteins. Proteobacteria, Bacteroidetes, Planctomycetes, and Euryarchaeota identification was favored by mechanical cell disruption with glass beads. In contrast, the relative abundance of Firmicutes, Actinobacteria, and Fusobacteria was improved when sonication was performed before bead beating. Tenericutes and Apicomplexa identification was enhanced by moistening the stool samples during processing and by disrupting cells with medium-sized glass beads combined with or without sonication. Human protein identifications were affected by sonication. To test the reproducibility of these gut metaproteomic analyses, we examined samples from six healthy individuals using a protocol that had shown a good taxonomic diversity and identification of proteins from Proteobacteria and humans. We also detected proteins involved in microbial functions relevant to the host and related mostly to specific taxa, such as B12 biosynthesis and short chain fatty acid (SCFA) production carried out mainly by members in the Prevotella genus and the Firmicutes phylum, respectively. The taxonomic and functional profiles obtained with the different protocols described in this work provides the researcher with valuable information when choosing the most adequate protocol for the study of certain pathologies under suspicion of being related to a specific taxon from the gut microbiota.
In recent years, some techniques have been incorporated for the study of microbial ecosystems, being 16S rRNA gene sequencing being the most widely used. Metaproteomics provides the advantage of identifying the interaction between microorganisms and human cells, but the available databases are less extensive as well as imprecise.
Metaproteomics is as a promising technique for studying the human gut microbiota, because it can reveal the taxonomic profile and also shed light on the functional role of the microbial community. Nevertheless, methods for extracting proteins from stool samples continue to evolve, in the pursuit of optimal protocols for moistening and dispersing the stool sample and for disrupting microbial cells which are two critical steps for ensuring good protein recovery. Here, we evaluated different stool sample processing and microbial cell disruption methods for metaproteomic analyses of human gut microbiota. An unsupervised principal component analysis showed that different methods produced similar human gut microbial taxonomic profiles. An unsupervised two-way hierarchical clustering analysis identified the microbial taxonomic signatures associated with each method. Proteobacteria and Bacteroidetes identification was favored by moistening the stool samples during processing and by disrupting cells with medium-sized glass beads. Ascomycota identification was enhanced by using large-sized glass beads during sample processing for stool dispersion. Euryarchaeota identification was improved with a combination of small and medium-sized glass beads for cell disruption. Assessments of the relative abundance of Firmicutes, Actinobacteria and Spirochaetes improved when ultrasonication was performed before cell disruption with glass beads. The latter method also increased the overall number of identified proteins. Taxonomic and protein functional analyses of metaproteomic data derived from stool samples from six healthy individuals showed common taxonomic profiles. We also detected certain proteins involved in microbial functions relevant to the host and related mostly to particular taxa, such as B12 biosynthesis and short chain fatty acid production carried out mainly by members in the Prevotella genus and the Firmicutes phylum, respectively. Finally, in this metaproteomic study we identified several human proteins, mostly related to the anti-microbial response, which could contribute to determining the beneficial and detrimental relationships between gut microbiota and human cells in particular human diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.