Heat shock protein 70 (Hsp70) is a powerful chaperone whose expression is induced in response to a wide variety of physiological and environmental insults, including anticancer chemotherapy, thus allowing the cell to survive to lethal conditions. Hsp70 cytoprotective properties may be explained by its anti-apoptotic function. Indeed, this protein can inhibit key effectors of the apoptotic machinery at the pre- and postmitochondrial level. In cancer cells, the expression of Hsp70 is abnormally high, and Hsp70 may participate in oncogenesis and in resistance to chemotherapy. In rodent models, Hsp70 overexpression increases tumor growth and metastatic potential. Depletion or inhibition of Hsp70 frequently reduces the size of the tumors and even can cause their complete involution. But Hsp70 can also be found in the extracellular medium. Its role is then immunogenic and the term chaperokine to define the extracellular chaperones has been advanced. Hsp70 tumorigenic functions as well as the strategies that are being developed in cancer therapy in order to inhibit Hsp70 are commented in this chapter.
The transmissible gastroenteritis coronavirus (TGEV), like many other viruses, exerts much of its cytopathic effect through the induction of apoptosis of its host cell. Apoptosis is coordinated by a family of cysteine proteases, called caspases, that are activated during apoptosis and participate in dismantling the cell by cleaving key structural and regulatory proteins. We have explored the caspase activation events that are initiated upon infection of the human rectal tumor cell line HRT18 with TGEV. We show that TGEV infection results in the activation of caspase-3, -6, -7, -8, and -9 and cleavage of the caspase substrates eIF4GI, gelsolin, and ␣-fodrin. Surprisingly, the TGEV nucleoprotein (N) underwent proteolysis in parallel with the activation of caspases within the host cell. Cleavage of the N protein was inhibited by cell-permeative caspase inhibitors, suggesting that this viral structural protein is a target for host cell caspases. We show that the TGEV nucleoprotein is a substrate for both caspase-6 and -7, and using site-directed mutagenesis, we have mapped the cleavage site to VVPD 359 2. These data demonstrate that viral proteins can be targeted for destruction by the host cell death machinery.
Objectives To investigate the effect of anti-apoptotic agents on cartilage degradation after a single impact to ankle cartilage. Design Ten human normal tali were impacted with the impulse of 1 Ns generating peak forces in the range of 600 N using a 4mm diameter indenter. Eight mm cartilage plugs contained the 4mm diameter impacted core and a 4mm adjacent ring were removed and cultured with or without P188 surfactant (8mg/ml), caspase-3 (10uM), or caspase-9 (2uM) inhibitors for 48hrs. Results were assessed in the superficial and middle-deep layers immediately after injury at day 0 and at 2, 7 and 14 days after injury by live/dead cell and Tunel assays and by histology with Safranin-O/fast green staining. Results A single impact to human articular cartilage ex vivo resulted in cell death, cartilage degeneration, and radial progression of apoptosis to the areas immediately adjacent to the impact. The P188 was more effective in preventing cell death than the inhibitors of caspases. It reduced cell death by more than 2-fold (P<0.05) in the core and by about 30% in the ring in comparison with the impacted untreated control at all time points. P188 also prevented radial expansion of apoptosis in the ring region especially in the first 7 days post impaction (7.5% Tunel-positive cells vs. 46% in the untreated control; p<0.01). Inhibitors of caspase-3 or 9 were effective in reducing cell death in the impacted core only at early time points, but were ineffective in doing so in the ring. Mankin score was significantly improved in the P188 and caspase-3 treated groups. Conclusions Early intervention with the P188 and caspase-3 inhibitor may have therapeutic potential in the treatment of cartilage defects immediately after injury.
This study evaluates the feasibility of removing nutrients by the microalgae Chlorella vulgaris, using urban wastewater as culture medium, namely the effluent subjected to secondary biological treatment in a wastewater treatment plant (WWTP). For this, laboratory experiments were performed in batch cultures to study the effect of initial nitrogen and phosphorus concentrations on growth and reduction of nutrient performance of C. vulgaris. The microalga was cultivated in enriched wastewater containing different phosphorus (1.3-143.5 mg x L(-1) P.PO4(3-)), ammonium (5.8-226.8 mg x L(-1) N-NH4+) and nitrate (1.5-198.3 mg x L(-1) N-NO3-) concentrations. The nutrient removal and growth kinetics have been studied: maximum productivity of 0.95 g SS x L(-1) x day(-1), minimum yield factor for cells on substrate (Y) of 11.51 g cells x g nitrogen(-1) and 0.04 g cells x g phosphorus(-1) were observed. The results suggested that C. vulgaris has a high potential to reduce nutrients in secondary WWTP effluents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.