The impact of phosphorous nutrition on plant growth, symbiotic N 2 fixation, ammonium assimilation, carbohydrate and aminoacid accumulation, as well as on nitrogen, phosphorus and ATP content in tissues in common bean (Phaseolus vulgaris) plants was investigated. Plants inoculated with Rhizobium tropici CIAT899 were grown in Leonard jars under controlled conditions, with P-deficient (0 and 0.1 mM), P-medium (0.5, 1 and 1.5 mM) and P-high (2mM) conditions in a N-free nutrient solution. The P application, increased leaf area, whole plant DW (67%), nodule biomass (4-fold), and shoot and root P content (4-and 6-fold, respectively) in plant harvested at the onset of flowering (28-days-old). However, P treatments decreased the total soluble sugar and amino acid content in vegetative organs (leaf, root and nodules). The root growth proved less sensitive to P deficiency than did shoot growth, and the leaf area was significantly reduced at low P-application. The absence of a relationship between shoot N content, and P levels in the growth medium could indicate that nitrogen fixation requires more P than does plant growth. The optimal amount for the P. vulgaris-R. tropici CIAT899 symbiosis was 1.5 mM P, this treatment augmented nodule-ARA 20-fold, and ARA per plant 70-fold compared with plants without P application.
It has been shown that salicylic acid (SA) acts as an endogenous signal molecule responsible for inducing abiotic stress tolerance in plants. The effect of SA and sodium chloride (NaCl) on growth, metabolite accumulation, oxidative stress and enzymatic and non-enzymatic antioxidant responses on common bean plants (Phaseolus vulgaris, cv. F-15) was studied. Results revealed that either SA or NaCl decrease, shoot, root and total plant dry weights. SA treatments decreased the contents of proline, and reduced forms of ascorbate and glutathione, however, the content of soluble sugars (TSS), thiobarbituric acidreactive substances (TBARs) and oxidized ascorbate remained unaffected. On the other hand, salinity significantly reduced the levels of endogenous SA but increased the content of proline, soluble sugars, TBARs, ascorbate and glutathione, as well as all increasing the levels of antioxidant enzyme activities assayed, except CAT. The application of SA improved the response of common bean plants to salinity by increasing plant dry weight and decreasing the content of organic solutes (proline and TSS) and damage to the membrane (TBARs). Moreover, SA application under saline conditions decreased the levels of antioxidant enzyme activities POX, APX and MDHAR which could indicate successful acclimatization of these plants to saline conditions.
Trehalose (alpha-D-glucopyranosyl-1,1-alpha-D-glucopyranoside), a non-reducing disaccharide, has been found in a wide variety of organisms playing an important role as an abiotic stress protectant. Plants may come into contact with trehalose from exogenous sources, such as in plant-rhizobia symbiosis in which the rhizobia have the capacity to produce trehalose. The aim of this work is to analyse how trehalose and trehalase respond to salt stress in root nodules of legumes. For this purpose, tissue expression of Medicago truncatula trehalase gene (MTTRE1) and the expression of MTTRE1 under salt stress were analysed by real-time quantitative reverse transcription-PCR method. Trehalase activity was determined and trehalose was also measured by gas chromatography. In addition, trehalase protein occurrence in different organs and at different developmental stages in Phaseolus vulgaris plants has been studied. MTTRE1 expression is induced in nodules compared with leaves and roots, indicating a transcriptional regulation of trehalase in the presence of the microsymbiont. Under salt stress conditions, trehalase activity is downregulated at the transcriptional level, allowing trehalose accumulation. The results found in this study led us to conclude that trehalase activity is induced in root nodules of legumes by the microsymbiont and that under salt stress conditions; trehalase activity is downregulated at the transcriptional level in M. truncatula nodules. This allows trehalose accumulation and supports the possible role of this disaccharide as a stabilizer against salt stress conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.