A slurry sampling method was developed for the fast determination of Pb, Ni, Fe, and Mn in construction materials by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS)....
New sensing platforms based on screen-printed carbon electrodes modified with composites based on polystyrene sulfonate and oxidized multi-walled carbon nanotubes (PSS/MWCNTs-COOH/SPCE) have been used to develop a novel HPLC method with electrochemical detection (ECD) for the determination of the most used synthetic phenolic antioxidants in cosmetics: butylhydroxytoluene (BHT), butylhydroxyanisole (BHA), tert-butylhydroquinone (TBHQ) and propyl gallate (PG). Optimal separation conditions were achieved using methanol: 0.10 mol L−1 acetate solution at pH 6 as mobile phase with a gradient elution program from 60 to 90% of methanol percentage in 15 min. The electrochemical detection was carried out in amperometric mode using the PSS/MWCNTs-COOH/SPCE at + 0.80 V vs. Ag. Under these optimal separation and detection conditions, the limits of detection (LOD) were between 0.11 and 0.25 mg L−1. These LOD values were better, especially for BHT, than those previously published in other HPLC methods. Linear ranges from 0.37 mg L−1, 0.83 mg L−1, 0.69 mg L−1 and 0.56 mg L−1 to 10 mg L−1 were obtained for PG, TBHQ, BHA and BHT, respectively. RSD values equal or lower than 5% and 8% were achieved for repeatability and reproducibility, respectively. The HPLC-ECD method was successfully applied to analyze different cosmetic samples. Recovery values within 83–109% were obtained in the validation studies.
Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.