COVID-19 is a severe respiratory disease threatening pregnant women, which increases the possibility of adverse pregnancy outcomes. Several recent studies have demonstrated the ability of SARS-CoV-2 to infect the mother enterocytes, disturbing the gut microbiota diversity. The aim of this study was to characterize the entero-mammary microbiota of women in the presence of the virus during delivery. Fifty mother–neonate pairs were included in a transversal descriptive work. The presence of SARS-CoV-2 RNA was detected in nasopharyngeal, mother rectal swabs (MRS) and neonate rectal swabs (NRS) collected from the pairs, and human colostrum (HC) samples collected from mothers. The microbiota diversity was characterized by high-throughput DNA sequencing of V3-16S rRNA gene libraries prepared from HC, MRS, and NRS. Data were analyzed with QIIME2 and R. Our results indicate that several bacterial taxa are highly abundant in MRS positive for SARS-CoV-2 RNA. These bacteria mostly belong to the Firmicutes phylum; for instance, the families Bifidobacteriaceae, Oscillospiraceae, and Microbacteriaceae have been previously associated with anti-inflammatory effects, which could explain the capability of women to overcome the infection. All samples, both positive and negative for SARS-CoV-2, featured a high abundance of the Firmicutes phylum. Further data analysis showed that nearly 20% of the bacterial diversity found in HC was also identified in MRS. Spearman correlation analysis highlighted that some genera of the Proteobacteria and Actinobacteria phyla were negatively correlated with MRS and NRS (p < 0.005). This study provides new insights into the gut microbiota of pregnant women and their potential association with a better outcome during SARS-CoV-2 infection.
Pediococcus pentosaceus 1101 was identified by using 16S rRNA and MALDI-Biotyper. The strain was exposed to conditions that resemble the gastrointestinal tract (GT) to evaluate its probiotic properties. That included the growth kinetics, proteolytic and inhibitory activities within a pH range, survival at low pH and in the presence of bile salts, antagonistic activity, cell-adhesion properties, and antibiotic resistance. The evaluation was followed by a genomic and proteomic analysis that involved the identification of proteins obtained under control and gastrointestinal conditions. The strain showed antagonistic activity against Gram-negative and Gram-positive bacteria, high resistance to acidity (87% logarithmic survival rate, pH 2) and bile salts (99% logarithmic survival rate, 0.5% w/v), and hydrophobic binding, as well as sensitivity to penicillin, amoxicillin, and chloramphenicol. On the other hand, P. pentosaceus 1101 has a genome size of 1.76 Mbp, with 1754 coding sequences, 55 rRNAs, and 33 tRNAs. The proteomic analysis showed that 120 proteins were involved in mechanisms in which the strain senses the effects of acid and bile salts. Moreover, the strain produces at least one lytic enzyme (N-acetylmuramoyl-L-alanine amidase; 32 kDa) that may be related to the antimicrobial activity. Therefore, proteins identified might be a key factor when it comes to the adaptation of P. pentosaceus 1101 into the GT and associated with its technological and probiotic properties.
Mammary gland secretory cells produce miRNA-rich milk. In humans, these miRNAs reach infant/neonate bloodstream, playing diverse roles, like neural system development, metabolism, and immune system maturation. Notwithstanding, still few works explore human milk miRNA content, and there are no reports at the population level. Our hypothesis was that miR-146b-5p, miR148a-3p, miR155-5p, mir181a-5p, and mir200a-3p immunoregulatory miRNAs are expressed in human colostrum/milk at a higher level than infant milk formulae. The aim of this work was to evaluate the expression of the five immunoregulatory miRNAs in human milk and compare it with their expression in infant milk formula. For this purpose, miRNA relative expression was measured by qPCR in cDNA prepared from total RNA extracted from sixty human colostrum/milk samples and six different formulae. The comparative Cт method 2−ΔCт using exogenous cel-miR-39 as internal control was employed, followed by statistical analysis. We found the relative expression levels of miRNAs are comparable among colostrum/milk samples, and these miRNAs are present in infant milk formulae but at very low concentrations. We conclude that the relative expression of the immunomodulatory miRNAs is comparable in all the human colostrum/milk samples and is higher than the expression in formulae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.