Some micropollutants present in wastewaters are barely removed in sewage treatment plants. In many cases a post-treatment process based on separation and/or oxidation has to be applied. The aim of this study was the technical and economic comparison of enzymatic technologies with other advanced oxidation processes (AOPs) for the degradation of phenol. Batch and continuous enzymatic reactors, using free and immobilized manganese peroxidase (MnP, EC 1.11.1.13), were considered. Continuous degradation of phenol in an enzymatic membrane reactor was shown to be the fastest process and degradation in a continuous reactor with immobilized enzyme involved the lowest consumption of enzyme. However, the immobilization process increased the enzyme cost 100-fold. A continuous enzymatic membrane reactor gave high degradation effi ciency and may be a viable technology for phenol removal when compared with other AOPs from both technical and economic points of view.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.