BackgroundHuman aging is associated with DNA methylation changes at specific sites in the genome. These epigenetic modifications may be used to track donor age for forensic analysis or to estimate biological age.ResultsWe perform a comprehensive analysis of methylation profiles to narrow down 102 age-related CpG sites in blood. We demonstrate that most of these age-associated methylation changes are reversed in induced pluripotent stem cells (iPSCs). Methylation levels at three age-related CpGs - located in the genes ITGA2B, ASPA and PDE4C - were subsequently analyzed by bisulfite pyrosequencing of 151 blood samples. This epigenetic aging signature facilitates age predictions with a mean absolute deviation from chronological age of less than 5 years. This precision is higher than age predictions based on telomere length. Variation of age predictions correlates moderately with clinical and lifestyle parameters supporting the notion that age-associated methylation changes are associated more with biological age than with chronological age. Furthermore, patients with acquired aplastic anemia or dyskeratosis congenita - two diseases associated with progressive bone marrow failure and severe telomere attrition - are predicted to be prematurely aged.ConclusionsOur epigenetic aging signature provides a simple biomarker to estimate the state of aging in blood. Age-associated DNA methylation changes are counteracted in iPSCs. On the other hand, over-estimation of chronological age in bone marrow failure syndromes is indicative for exhaustion of the hematopoietic cell pool. Thus, epigenetic changes upon aging seem to reflect biological aging of blood.
1. Recently, there has been much interest in physiological trade‐offs between parasite resistance and fitness‐related traits such as secondary sexual characters or reproductive effort. More specifically it has been suggested that (i) energetically costly activities may suppress the immune system and (ii) that this immunosuppression is caused by costly immune defences competing with other bodily demands for scarce resources, e.g. energy. 2. The possibility was investigated of an energetically based trade‐off between humoral (antibody‐based) immunocompetence and other costly activities, by immunizing Blue Tits, Parus caeruleus, with novel antigens (proteins) thereby inducing antibody responses, and performing two experiments. In experiment 1, one group of birds was subjected to cold stress, thereby increasing their daily energy expenditure and the effect on immune responsiveness was investigated. In experiment 2, the basal metabolic rate (BMR) of immunized birds was measured to investigate the energetic costs of mounting the antibody responses. 3. In experiment 1, birds subject to increased energy turnover had significantly lower antibody responses, consistent with the hypothesis that environmental stress could suppress immunocompetence. However, in experiment 2 the energetic costs of these antibody responses were found to be low and at most 8–13% of BMR, indicating that adaptive resource allocation of energy was an unlikely explanation for the lowered immune responsiveness in the cold stress treatment (experiment 1). 4. It is concluded that our data provide some support to the idea that there may be a trade‐off between immunocompetence and energetically costly activities such as thermoregulation, reproduction or mate attraction, although this trade‐off may not necessarily be based on energy or nutrient limitation (i.e. resource allocation models). Two non‐energetic explanations are briefly discussed, one adaptive and one non‐adaptive, that could explain the immunosuppression in our study as well as in other behavioural and ecological contexts.
All tissues of the organism are affected by aging. This process is associated with epigenetic modifications such as methylation changes at specific cytosine residues in the DNA (CpG sites). Here, we have identified an Epigenetic-Aging-Signature which is applicable for many tissues to predict donor age. DNA-methylation profiles of various cell types were retrieved from public data depositories - all using the HumanMethylation27 BeadChip platform which represents 27,578 CpG sites. Five datasets from dermis, epidermis, cervical smear, T-cells and monocytes were used for Pavlidis Template Matching to identify 19 CpG sites that are continuously hypermethylated upon aging (R > 0.6; p-value <10−13). Four of these CpG sites (associated with the genes NPTX2, TRIM58, GRIA2 and KCNQ1DN) and an additional hypomethylated CpG site (BIRC4BP) were implemented in a model to predict donor age. This Epigenetic-Aging-Signature was tested on a validation group of eight independent datasets corresponding to several cell types from different tissues. Overall, the five CpG sites revealed age-associated DNA-methylation changes in all tissues. The average absolute difference between predicted and real chronological age was about 11 years. This method can be used to predict donor age in various cell preparations - for example in forensic analysis.
Pluripotent stem cells evade replicative senescence, whereas other primary cells lose their proliferation and differentiation potential after a limited number of cell divisions, and this is accompanied by specific senescence-associated DNA methylation (SA-DNAm) changes. Here, we investigate SA-DNAm changes in mesenchymal stromal cells (MSC) upon longterm culture, irradiation-induced senescence, immortalization, and reprogramming into induced pluripotent stem cells (iPSC) using high-density HumanMethylation450 BeadChips. SA-DNAm changes are highly reproducible and they are enriched in intergenic and nonpromoter regions of developmental genes. Furthermore, SA-hypomethylation in particular appears to be associated with H3K9me3, H3K27me3, and Polycomb-group 2 target genes. We demonstrate that ionizing irradiation, although associated with a senescence phenotype, does not affect SA-DNAm. Furthermore, overexpression of the catalytic subunit of the human telomerase (TERT) or conditional immortalization with a doxycyclineinducible system (TERT and SV40-TAg) result in telomere extension, but do not prevent SA-DNAm. In contrast, we demonstrate that reprogramming into iPSC prevents almost the entire set of SA-DNAm changes. Our results indicate that long-term culture is associated with an epigenetically controlled process that stalls cells in a particular functional state, whereas irradiation-induced senescence and immortalization are not causally related to this process. Absence of SADNAm in pluripotent cells may play a central role for their escape from cellular senescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.