Insulin-like growth factor-1 (IGF-1) effects on aging and neurodegeneration is still controversial. However, it is widely admitted that IGF-1 is involved in the neuroinflammatory response. In peripheral tissues, several studies showed that IGF-1 inhibited the expression of inflammatory markers, although other studies concluded that IGF-1 has proinflammatory functions. Furthermore, proinflammatory cytokines such as TNF-α impaired IGF-1 signaling. In the brain, there are controversial results on effects of IGF-1 in neuroinflammation. In addition to direct protective effects on neurons, several studies revealed anti-inflammatory effects of IGF-1 acting on astrocytes and microglia, and that IGF-1 may also inhibit blood brain barrier permeability. Altogether suggests that the aging-related decrease in IGF-1 levels may contribute to the aging-related pro-inflammatory state. IGF-1 inhibits the astrocytic response to inflammatory stimuli, and modulates microglial phenotype (IGF-1 promotes the microglial M2 and inhibits of M1 phenotype). Furthermore, IGF-1 is mitogenic for microglia. IGF-1 and estrogen interact to modulate the neuroinflammatory response and microglial and astrocytic phenotypes. Brain renin-angiotensin and IGF-1 systems also interact to modulate neuroinflammation. Induction of microglial IGF-1 by angiotensin, and possibly by other pro-inflammatory inducers, plays a major role in the repression of the M1 microglial neurotoxic phenotype and the enhancement of the transition to an M2 microglial repair/regenerative phenotype. This mechanism is impaired in aged brains. Aging-related decrease in IGF-1 may contribute to the loss of capacity of microglia to undergo M2 activation. Fine tuning of IGF-1 levels may be critical for regulating the neuroinflammatory response, and IGF-1 may be involved in inflammation in a context-dependent mode.
The key link between renin–angiotensin system (RAS) and COVID-19 is ACE2 (angiotensin-converting enzyme 2), which acts as a double-edged sword, because ACE2 increases the tissue anti-inflammatory response but it is also the entry receptor for the virus. There is an important controversy on several drugs that regulate RAS activity and possibly ACE2, and are widely used, particularly by patients most vulnerable to severe COVID-19. In the lung of healthy rats, we observed that candesartan (an angiotensin type-1, AT1, receptor blocker; ARB) and captopril (an ACE inhibitor; ACEI) up-regulated expression of tissue ACE2 and RAS anti-inflammatory axis receptors (AT2 and Mas receptors). This effect was particularly pronounced in rats with metabolic syndrome (obesity, increased blood pressure and hyperglycemia) and aged rats. Treatment of cultures of human type-II pneumocytes with candesartan or captopril induced up-regulation of ACE2 expression in cells. Treatment with viral spike protein induced a decrease in full-length (i.e. transmembrane) ACE2, an increase in levels of a short intracellular ACE2 polypeptide and an increase in ADAM17 activity in cells, together with an increase in levels of soluble ACE2 and major proinflammatory cytokines in the culture medium. Spike protein-induced changes and levels of spike protein internalization in cells were inhibited by pretreatment with the above-mentioned drugs. The results suggest that these drugs increase ACE2 levels and promote the anti-inflammatory RAS axis in the lung. Furthermore, possible up-regulation of viral entry by the drug-induced increase in expression of transmembrane ACE2 is counteracted by additional mechanisms, particularly by drug-induced inhibition of ADAM17 activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.