Meniere's disease (MD) is a chronic disorder of the inner ear defined by sensorineural hearing loss, tinnitus and episodic vertigo, and familial MD is observed in 5-15% of sporadic cases. Although its pathophysiology is largely unknown, studies in human temporal bones have found an accumulation of endolymph in the scala media of the cochlea. By whole-exome sequencing, we have identified two novel heterozygous single-nucleotide variants in FAM136A and DTNA genes, both in a Spanish family with three affected cases in consecutive generations, highly suggestive of autosomal-dominant inheritance. The nonsense mutation in the FAM136A gene leads to a stop codon that disrupts the FAM136A protein product. Sequencing revealed two mRNA transcripts of FAM136A in lymphoblasts from patients, which were confirmed by immunoblotting. Carriers of the FAM136A mutation showed a significant decrease in the expression level of both transcripts in lymphoblastoid cell lines. The missense mutation in the DTNA gene produces a novel splice site which skips exon 21 and leads to a shorter alternative transcript. We also demonstrated that FAM136A and DTNA proteins are expressed in the neurosensorial epithelium of the crista ampullaris of the rat by immunohistochemistry. While FAM136A encodes a mitochondrial protein with unknown function, DTNA encodes a cytoskeleton-interacting membrane protein involved in the formation and stability of synapses with a crucial role in the permeability of the blood-brain barrier. Neither of these genes has been described in patients with hearing loss, FAM136A and DTNA being candidate gene for familiar MD.
Autosomal dominant (AD) familial Meniere's disease (FMD) is a rare disorder involving the inner ear defined by sensorineural hearing loss, tinnitus and episodic vertigo. Here, we have identified two novel and rare heterozygous variants in the SEMA3D and DPT genes segregating with the complete phenotype that have variable expressivity in two pedigrees with AD-FMD. A detailed characterization of the phenotype within each family illustrates the clinical heterogeneity in the onset and progression of the disease. We also showed the expression of both genes in the human cochlea and performed in silico analyses of these variants. Three-dimensional protein modelling showed changes in the structure of the protein indicating potential physical interactions. These results confirm a genetic heterogeneity in FMD with incomplete penetrance and variable expressivity.
Meniere's Disease (MD) is a complex disorder associated with an accumulation of endolymph in the membranous labyrinth in the inner ear. It is characterized by recurrent attacks of spontaneous vertigo associated with sensorineural hearing loss (SNHL) and tinnitus. The SNHL usually starts at low and medium frequencies with a variable progression to high frequencies. We identified a novel missense variant in the PRKCB gene in a Spanish family with MD segregating low-to-middle frequency SNHL. Confocal imaging showed strong PKCB II protein labelling in non-sensory cells, the tectal cells and inner border cells of the rat organ of Corti with a tonotopic expression gradient. The PKCB II signal was more pronounced in the apical turn of the cochlea when compared with the middle and basal turns. It was also much higher in cochlear tissue than in vestibular tissue. Taken together, our findings identify PRKCB gene as a novel candidate gene for familial MD and its expression gradient in supporting cells of the organ of Corti deserves attention, given the role of supporting cells in Krecycling within the endolymph, and its apical turn location may explain the onset of hearing loss at low frequencies in MD.
Background: Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) represent the most common primary liver malignancies whose outcome is influenced by the immune response.Methods: In this study, we have functionally characterized, by flow cytometry, circulating myeloid dendritic cells (mDCs) and FcεRI + monocytes in a group of healthy individuals (n = 10) and in a group of patients with HCC (n = 19) and CCA (n = 8), at the time point of the surgical resection (T0) and once the patient had recovered from surgery (T1). Moreover, we proceeded to a more in depth phenotypic characterization of the FcεRI + monocyte subpopulation.Results: A significant decrease in the frequency of TNFα producing FcεRI + monocytes and mDCs in HCC and CCA patients when compared to the group of healthy individuals was observed, and a close association between FcεRI + monocytes and mDCs dysfunction was identified. In addition, the phenotypic characteristics of FcεRI + monocytes from healthy individuals strongly suggest that this population drives to mDCs, which matches with the fact that both populations are functionally affected.Conclusions: The frequency and the function of circulating mDCs and FcεRI + monocytes are affected in both HCC and CCA patients, and FcεRI + monocytes could represent those fated to become mDCs.
Lipoxidation is a well-known reaction between electrophilic carbonyl species, formed during oxidation of lipids, and specific proteins that, in most cases, causes an alteration in proteins function. This can occur under physiological conditions but, in many cases, it has been associated to pathological process, including cancer. Lipoxidation may have an effect in cancer development through their effects in tumour cells, as well as through the alteration of immune components and the consequent modulation of the immune response. The formation of protein adducts affects different proteins in cancer, triggering different mechanism, such as proliferation, cell differentiation and apoptosis, among others, altering cancer progression. The divergent results obtained documented that the formation of lipoxidation adducts can have either anti-carcinogenic or pro-carcinogenic effects, depending on the cell type affected and the specific adduct formed. Moreover, lipoxidation adducts may alter the immune response, consequently causing either positive or negative alterations in cancer progression. Therefore, in this review, we summarize the effects of lipoxidation adducts in cancer cells and immune components and their consequences in the evolution of different types of cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.