Digital writing devices associated with the use of computers, tablet PCs, or mobile phones are increasingly replacing writing by hand. It is, however, controversially discussed how writing modes influence reading and writing performance in children at the start of literacy. On the one hand, the easiness of typing on digital devices may accelerate reading and writing in young children, who have less developed sensory-motor skills. On the other hand, the meaningful coupling between action and perception during handwriting, which establishes sensory-motor memory traces, could facilitate written language acquisition. In order to decide between these theoretical alternatives, for the present study, we developed an intense training program for preschool children attending the German kindergarten with 16 training sessions. Using closely matched letter learning games, eight letters of the German alphabet were trained either by handwriting with a pen on a sheet of paper or by typing on a computer keyboard. Letter recognition, naming, and writing performance as well as word reading and writing performance were assessed. Results did not indicate a superiority of typing training over handwriting training in any of these tasks. In contrast, handwriting training was superior to typing training in word writing, and, as a tendency, in word reading. The results of our study, therefore, support theories of action-perception coupling assuming a facilitatory influence of sensory-motor representations established during handwriting on reading and writing.
During the last years, digital writing devices are increasingly replacing handwriting with pencil and paper. As reading and writing skills are central for education, it is important to know, which writing tool is optimal for initial literacy education. The present training study was therefore set up to test the influence of the writing tool on the acquisition of literacy skills at the letter and word level with various tests in a large sample of kindergarten children (n = 147). Using closely matched letter learning games, children were trained with 16 letters by handwriting with a pencil on a sheet of paper, by writing with a stylus on a tablet computer, or by typing letters using a virtual keyboard on a tablet across 7 weeks. Training using a stylus on a touchscreen is an interesting comparison condition for traditional handwriting, because the slippery surface of a touchscreen has lower friction than paper and thus increases difficulty of motor control. Before training, immediately after training and four to five weeks after training, we assessed reading and writing performance using standardized tests. We also assessed visuo-spatial skills before and after training, in order to test, whether the different training regimens affected cognitive domains other than written language. Children of the pencil group showed superior performance in letter recognition and improved visuo-spatial skills compared with keyboard training. The performance of the stylus group did not differ significantly neither from the keyboard nor from the pencil group. Keyboard training, however, resulted in superior performance in word writing and reading compared with handwriting training with a stylus on the tablet, but not compared with the pencil group. Our results suggest that handwriting with pencil fosters acquisition of letter knowledge and improves visuo-spatial skills compared with keyboarding. At least given the current technological state, writing with a stylus on a touchscreen seems to be the least
Executive functions (EFs) – a set of cognitive control abilities – mediate resilience to stress and are associated with academic achievement and health throughout life. They are crucially linked to prefrontal cortex function as well as to other cortical and subcortical brain functions, which are maturing throughout childhood at different rates. Recent behavioral research suggested that children’s EFs were related to parenting quality and child attachment security, but the neural correlates of these associations are unknown. With this study we tested in 4- to 6-year-old healthy children (N = 27) how emotional availability (EA) of the mother-child-interaction was associated with behavioral and electrophysiological correlates of response inhibition (a core EF) in a Go/Nogo task, using event-related potential recordings (ERPs), and with behavioral performance in a Delay of Gratification (DoG) and a Head-Toes-Knees-Shoulders task (HTKS). Our data showed that the Go/Nogo task modulated children’s ERP components resembling adult electrophysiological indices of response inhibition - the N2 and P3/LPC ERPs-, but the children’s N2 and P3/LPC ERPs showed longer latencies. Higher maternal autonomy-fostering behavior and greater child responsiveness were significantly associated with smaller children’s N2 Go/Nogo effects at fronto-central and parietal sites and with greater Go/Nogo effects in the N2 time window at occipital sites, over and above children’s age and intelligence. Additionally, greater maternal sensitivity and a higher dyadic EA quality of the mother-child-interaction went along with greater occipital Go/Nogo effects in the N2 time window, but this effect clearly diminished when we controlled for children’s age and intelligence. Higher maternal autonomy-support was also positively associated with better HTKS performance, and higher dyadic EA quality went along with higher HTKS and DoG scores. However, no significant associations were found between EA variables and the behavioral response inhibition measures of the Go/Nogo task. Our results suggest that parenting qualities modulate the functionality of neural circuits involved in response inhibition, an important component of EFs. This finding, thus, indicates that parent–child interactions shape the neurocognitive development underlying EFs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.