Acetobacter diazotrophicus, a nitrogen-fixing bacterium associated with sugar cane, secretes a levansucrase (sucrose-2,6-beta-D-fructan 6-beta-D-fructosyltransferase; EC 2.4.1.10). This enzyme is constitutively expressed and represents more than 70% of the total proteins secreted by strain SRT4. The purified protein consists of a single 58 kDa polypeptide with an isoelectric point of 5.5. Its activity is optimal at pH 5.0. It catalyses transfructosylation from sucrose to a variety of acceptors including water (sucrose hydrolysis), glucose (exchange reaction), fructan (polymerase reaction) and sucrose (oligofructoside synthesis). In vivo the polymerase activity leads to synthesis of a high-molecular-mass fructan of the levan type. A. diazotrophicus levansucrase catalyses transfructosylation via a Ping Pong mechanism involving the formation of a transient fructosyl-enzyme intermediate. The catalytic mechanism is very similar to that of Bacillus subtilis levansucrase. The kinetic parameters of the two enzymes are of the same order of magnitude. The main difference between the two enzyme specificities is the high yield of oligofructoside, particularly 1-kestotriose and kestotetraose, accumulated by A. diazotrophicus levansucrase during sucrose transformation. We discuss the hypothesis that these catalytic features may serve the different biological functions of each enzyme.
The molecular signals and pathways that govern biotic and abiotic stress responses in sugarcane are poorly understood. Here we describe SodERF3, a sugarcane (Saccharum officinarum L. cv Ja60-5) cDNA that encodes a 201-amino acid DNA-binding protein that acts as a transcriptional regulator of the ethylene responsive factor (ERF) superfamily. Like other ERF transcription factors, the SodERF3 protein binds to the GCC box, and its deduced amino acid sequence contains an N-terminal putative nuclear localization signal (NLS). In addition, a C-terminal short hydrophobic region that is highly homologous to an ERF-associated amphiphilic repression-like motif, typical for class II ERFs, was found. Northern and Western blot analysis showed that SodERF3 is induced by ethylene. In addition, SodERF3 is induced by ABA, salt stress and wounding. Greenhouse-grown transgenic tobacco plants (Nicotiana tabacum L. cv. SR1) expressing SodERF3 were found to display increased tolerance to drought and osmotic stress.
The Acetobacter diazotrophicus SRT4 gene encoding levansucrase (EC 2.4.1.10) ( M A ) was isolated from a genomic library. The nucleotide sequence of a 2-3 kb DNA fragment sufficient for complementation of a levansucrase-def icient mutant (obtained by EMS treatment) was determined. The M A gene (1751 bp) coded for a polypeptide of molecular mass 649 kDa with an isoelectric point of 5-2. The N-terminal amino acid sequence of the extracellular levansucrase indicated the presence of a precursor protein with a putative signal sequence of 51 residues which is possibly cleaved in two successive steps. Expression of the lsdA gene from the lac promoter in Escherichia coli resulted in the production of a protein with levansucrase activity. The deduced amino acid sequence of the M A gene was 48% and 46% identical with the levansucrases from the Gram-negative bacteria Zymornonas mobilis and Ennrinia amylowora, respectively, but only 28-31 YO identical with levansucrases from Gram-positive bacteria. Multiple alignments of published levansucrase sequences from Gramnegative and Gram-positive bacteria revealed eight conserved motifs. A comparison of the catalytic properties and the sequence of the A. diazotrophicus levansucrase with those of the Bacillus subtilis levansucrase suggested that one of these motifs may be involved in the specificity of the synthesized product. Disruption of the lsdA gene in the genome of A. diazotrophicus resulted in a mutant lacking both levansucrase activity and the ability to utilize sucrose as a carbon source, suggesting that levansucrase is the key enzyme in sucrose metabolism of A. diazotrophicus. 1
Fructans, homopolymers of fructose produced by fructosyltransferases (FTs), are emerging as intriguing components in halophiles since they are thought to be associated with osmotic stress tolerance and overall fitness of microorganisms and plants under high-salinity conditions. Here, we report on the full characterization of the first halophilic FT, a levansucrase from Halomonas smyrnensis AAD6 (HsLsc; EC 2.4.1.10). The encoding gene (lsc) was cloned into a vector with a 6xHis Tag at its C-terminus, then expressed in Escherichia coli. The purified recombinant enzyme (47.3 kDa) produces levan and a wide variety of fructooligosaccharides from sucrose, but only in the presence of high salt concentrations (> 1.5 M NaCl). HsLsc showed Hill kinetics and pH and temperature optima of 5.9 and 37 °C, respectively. Interestingly, HsLsc was still very active at salt concentrations close to saturation (4.5 M NaCl) and was selectively inhibited by divalent cations. The enzyme showed high potential in producing novel saccharides derived from raffinose as both fructosyl donor and acceptor and cellobiose, lactose, galactose, and ʟ-arabinose as fructosyl acceptors. With its unique biochemical characteristics, HsLsc is an important enzyme for future research and potential industrial applications in a world faced with drought and diminishing freshwater supplies.
beta-Fructofuranosidases share a conserved aspartic acid-containing motif (Arg-Asp-Pro; RDP) which is absent from alpha-glucopyranosidases. The role of Asp-309 located in the RDP motif of levansucrase (EC 2.4.1.10) from Acetobacter diazotrophicus SRT4 was studied by site-directed mutagenesis. Substitution of Asp-309 by Asn did not affect enzyme secretion. The kcat of the mutant levansucrase was reduced 75-fold, but its Km was similar to that of the wild-type enzyme, indicating that Asp-309 plays a major role in catalysis. The two levansucrases showed optimal activity at pH 5.0 and yielded similar product profiles. Thus the mutation D309N affected the efficiency of sucrose hydrolysis, but not the enzyme specificity. Since the RDP motif is present in a conserved position in fructosyltransferases, invertases, levanases, inulinases and sucrose-6-phosphate hydrolases, it is likely to have a common functional role in beta-fructofuranosidases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.