Several genes coding for different cytokines may affect host susceptibility to tuberculosis. This study investigates the relationship of the single base change polymorphic variants identified in the first intron of interferon-gamma (+874 T/A) and in the promoter region of interleukin-10 gene (-1,082 G/A), with cytokine production by peripheral blood mononuclear cells and tuberculosis susceptibility. We studied a Spanish population of 113 patients with culture-proven pulmonary tuberculosis, 207 healthy close contacts (125 tuberculin reactive and 82 tuberculin negative), and 100 healthy tuberculin-negative control subjects. Multiple logistic regression analysis showed that individuals homozygous for the interferon-gamma (+874) A allele had a 3.75-fold increased risk of developing tuberculosis (95% confidence interval, 2.26-6.23, p = 0.0017). Stimulated production of interferon-gamma by peripheral mononuclear cells from patients with genotype AA was depressed compared with that of non-AA homozygotes at the time of diagnosis and after completion of therapy. Multivariate analysis showed that the presence of an AA genotype and the absolute number of lymphocytes were the only independent predictors of interferon-gamma production. In contrast, the different rates of interleukin-10 production associated with the interleukin-10 polymorphism did not affect susceptibility to tuberculosis. Thus, a genetic defect in the production of interferon-gamma in individuals homozygous for the (+874) A allele could contribute to their increased risk of developing tuberculosis.
The relationship between fluctuating cytokine concentrations in plasma and the outcome of sepsis is complex. We postulated that early measurement of the activation of nuclear factor B (NF-B), a transcriptional regulatory protein involved in proinflammatory cytokine expression, may help to predict the outcome of sepsis. We determined NF-B activation in peripheral blood mononuclear cells of 34 patients with severe sepsis (23 survivors and 11 nonsurvivors) and serial concentrations of inflammatory cytokines (interleukin-6, interleukin-1, and tumor necrosis factor) and various endogenous antagonists in plasma. NF-B activity was significantly higher in nonsurvivors and correlated strongly with the severity of illness (APACHE II score), although neither was related to the cytokine levels. Apart from NF-B activity, the interleukin-1 receptor antagonist was the only cytokine tested whose level in plasma was of value in predicting mortality by logistic regression analysis. These results underscore the prognostic value of early measurement of NF-B activity in patients with severe sepsis.Many reports have focused on aspects of the proinflammatory cytokine network, which is believed to be central to the pathophysiology of the sepsis syndrome (5,8). However, the cytokine responses in patients with sepsis appears to vary so much between individuals (10) that the prognostic usefulness of circulating cytokine concentrations is often less than that of clinical variables, such as the acute physiology and chronic health evaluation (APACHE) II or III (9). Other studies indicate that the problem in overwhelming sepsis is not that inflammatory cytokines are expressed but, rather, that their expression is not properly modulated by anti-inflammatory mediators (16,17). Recent investigations by others (3) and ourselves (1) searching for new clinically reliable markers in patients with sepsis have shown that circulating leptin levels, whose secretion is closely linked to the activation of the cytokine cascade (1), may help to predict mortality in sepsis and septic shock.Among several transcriptional regulatory factors involved in immunoregulatory genes expression, nuclear factor kappa B (NF-B) acts at a critical step for directing the transcription of many proinflammatory genes in animal models of inflammatory diseases (6, 7). Investigations regarding the role of NF-B in human inflammatory diseases are scarce (2, 15). So far, no study has aimed to examine in patients with sepsis the relationship between the concentrations of some components of the proinflammatory and anti-inflammatory cytokine response in plasma, NF-B expression in peripheral blood mononuclear cells, and clinical outcome. We hypothesized that severe, fatal sepsis could be distinguished from less severe sepsis by demonstrating greater NF-B activation and decreased anti-inflammatory response. Thus, this study compared the prognostic value of combining measurements of NF-B activity in circulating blood cells and the cytokine profile in plasma in patients with severe sepsis. ...
Leptin production is increased in rodents by administration of endotoxin or cytokines. To investigate whether circulating leptin is related to cytokine release and survival in human sepsis, plasma concentrations of leptin, interleukin (IL)-6, IL-1beta, tumor necrosis factor (TNF)-alpha, soluble TNF receptor type I, IL-1 receptor antagonist (IL-1ra), and the inflammatory modulator IL-10 were measured as soon as severe sepsis (n=28) or septic shock (n=14) developed and every 6 h for 24 h. Patients with sepsis or septic shock had leptin concentrations 2.3- and 4.2-fold greater, respectively, than the control group. There was an independent association for leptin with IL-1ra and IL-10 in both patient groups. By discriminant analysis, leptin and IL-6 were independent predictors of death. These findings suggest that increases in leptin levels may be a host defense mechanism during sepsis.
The neuronal ␣7 nicotinic receptor subunit gene (CHRNA7) is partially duplicated in the human genome forming a hybrid gene (CHRFAM7A) with the novel FAM7A gene. The hybrid gene transcript, dup␣7, has been identified in brain, immune cells, and the HL-60 cell line, although its translation and function are still unknown. In this study, dup␣7 cDNA has been cloned and expressed in GH4C1 cells and Xenopus oocytes to study the pattern and functional role of the expressed protein. Our results reveal that dup␣7 transcript was natively translated in HL-60 cells and heterologously expressed in GH4C1 cells and oocytes. Injection of dup␣7 mRNA into oocytes failed to generate functional receptors, but when co-injected with ␣7 mRNA at ␣7/dup␣7 ratios of 5:1, 2:1, 1:1, 1:5, and 1:10, it reduced the nicotine-elicited ␣7 current generated in control oocytes (␣7 alone) by 26, 53, 75, 93, and 94%, respectively. This effect is mainly due to a reduction in the number of functional ␣7 receptors reaching the oocyte membrane, as deduced from ␣-bungarotoxin binding and fluorescent confocal assays. Two additional findings open the possibility that the dominant negative effect of dup␣7 on ␣7 receptor activity observed in vitro could be extrapolated to in vivo situations. (i) Compared with ␣7 mRNA, basal dup␣7 mRNA levels are substantial in human cerebral cortex and higher in macrophages.(ii) dup␣7 mRNA levels in macrophages are down-regulated by IL-1, LPS, and nicotine. Thus, dup␣7 could modulate ␣7 receptor-mediated synaptic transmission and cholinergic antiinflammatory response.Neuronal ␣7 nicotinic acetylcholine receptors (␣7 nAChRs) 4 are widely expressed in the central and peripheral nervous systems. In neurons, homomeric ␣7 nAChRs, composed of five ␣7 subunits, modulate neurotransmitter release in presynaptic nerve terminals and induce excitatory impulses in postsynaptic neurons (1-4). Signaling through ␣7 nAChRs in the central nervous system has been associated with neuronal plasticity and cell survival (5-7), although impaired activity of this receptor has been implicated in the pathogenesis of schizophrenia, Alzheimer disease, and depression (8 -12). The presence of ␣7 nAChRs has also been reported in non-neuronal cells such as vascular and brain en-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.