This paper provides an overview of the different deep convolutional neural network (DCNNs) architectures that have been investigated in the past years for the generation of synthetic computed tomography (CT) or pseudo-CT from magnetic resonance (MR). The U-net, the Atrous-net and the Residual-net architectures were analyzed, implemented and compared. Each network was implemented using 2D filters and 3D filters with 2D slices and 3D patches respectively as inputs. Two datasets were used for training and evaluation. The first one is composed by pairs of 3D T1-weighted MR and Low-dose CT images from the head of 19 healthy women. The second database contains dual echo Dixon-VIBE MR images and CT images from the pelvis of 13 colorectal and 6 prostate cancer patients. Bone structures in the target anatomy were key in choosing the right deep learning approach. This work provides a deep explanation of the architectures in order to know which DCNN fits better each medical application. According to this study, the 3D U-net architecture would be the best option to generate head pseudo-CTs while the 2D Residual-net provides the most accurate results for the pelvis anatomy.
Medical imaging is considered one of the most important advances in the history of medicine and has become an essential part of the diagnosis and treatment of patients. Earlier prediction and treatment have been driving the acquisition of higher image resolutions as well as the fusion of different modalities, raising the need for sophisticated hardware and software systems for medical image registration, storage, analysis, and processing. In this scenario and given the new clinical pipelines and the huge clinical burden of hospitals, these systems are often required to provide both highly accurate and real-time processing of large amounts of imaging data. Additionally, lowering the prices of each part of imaging equipment, as well as its development and implementation, and increasing their lifespan is crucial to minimize the cost and lead to more accessible healthcare. This paper focuses on the evolution and the application of different hardware architectures (namely, CPU, GPU, DSP, FPGA, and ASIC) in medical imaging through various specific examples and discussing different options depending on the specific application. The main purpose is to provide a general introduction to hardware acceleration techniques for medical imaging researchers and developers who need to accelerate their implementations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.