The capacity of a series of new cationic nickel and manganese metalloporphyrins to bind in the minor groove of DNA was evaluated by binding competition experiments with manganese(III)-bis-aqua-meso-tetrakis(4-N-methylpyridiniumyl)porphyrin, Mn-TMPyP, a powerful artificial nuclease when associated with KHSO(5). The four N-methylpyridiniumyl substituents on this porphyrin macrocycle are responsible for a strong binding affinity for the minor groove of AT-rich DNA. The inhibition of DNA cleavage mediated by Mn-TMPyP/KHSO(5) by the various tested porphyrins correlated with their competitive occupancy of the minor groove site of Mn-TMPyP. Introduction of long and flexible cationic substituents at the periphery of the porphyrin macrocycle precluded the interaction of the porphyrin derivative in the minor groove and resulted in low affinity for DNA. On the other hand, introduction of phenylpyridiniumyl substituents on the porphyrin macrocycle surprisingly conferred the new porphyrin derivative with a tight binding in the minor groove of a six consecutive AT base pairs sequence. These data on structural requirements for minor groove DNA binding will help the rational design of porphyrin derivatives for selective targeting of quadruplex DNA versus double-stranded DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.