Reactive astrocytes and dystrophic neurites, most aberrant presynaptic elements, are found surrounding amyloid‐β plaques in Alzheimer's disease (AD). We have previously shown that reactive astrocytes enwrap, phagocytose, and degrade dystrophic synapses in the hippocampus of APP mice and AD patients, but affecting less than 7% of dystrophic neurites, suggesting reduced phagocytic capacity of astrocytes in AD. Here, we aimed to gain insight into the underlying mechanisms by analyzing the capacity of primary astrocyte cultures to phagocytose and degrade isolated synapses (synaptoneurosomes, SNs) from APP (containing dystrophic synapses and amyloid‐β peptides), Tau (containing AT8‐ and AT100‐positive phosphorylated Tau) and WT (controls) mice. We found highly reduced phagocytic and degradative capacity of SNs‐APP, but not AT8/AT100‐positive SNs‐Tau, as compared with SNs‐WT. The reduced astrocyte phagocytic capacity was verified in hippocampus from 12‐month‐old APP mice, since only 1.60 ± 3.81% of peri‐plaque astrocytes presented phagocytic structures. This low phagocytic capacity did not depend on microglia‐mediated astrocyte reactivity, because removal of microglia from the primary astrocyte cultures abrogated the expression of microglia‐dependent genes in astrocytes, but did not affect the phagocytic impairment induced by oligomeric amyloid‐β alone. Taken together, our data suggest that amyloid‐β, but not hyperphosphorylated Tau, directly impairs the capacity of astrocytes to clear the pathological accumulation of oligomeric amyloid‐β, as well as of peri‐plaque dystrophic synapses containing amyloid‐β, perhaps by reducing the expression of phagocytosis receptors such as Mertk and Megf10, thus increasing neuronal damage in AD. Therefore, the potentiation or recovery of astrocytic phagocytosis may be a novel therapeutic avenue in AD.
Increasing evidence implicates the decline of microglial defensive responses in the progression of Alzheimer's disease (AD). Loss of function of genetic non-modifiable AD risk factors, as the triggering receptor expressed on myeloid cells 2 (TREM2) and the apolipoprotein E (APOE), associates with microglial dysfunction characterized by reduced clustering and survival around Aß plaques. However, the contribution of modifiable AD risk factors to microglial dysfunction is not known. We show here the concomitant activation of the HIF1-mediated stress response pathway and the transcription of aerobic respiration-related genes in Aß plaque-associated microglia (AßAM). We also demonstrate that AßAM mitochondria are elongated, a cellular response found in cells that maintain aerobic respiration under low nutrient and oxygen conditions, suggesting that HIF1 activation may be hijacking microglial mitochondrial metabolism.Overactivation of HIF1 induces microglial quiescence in cellulo, characterized by lower mitochondrial respiration and reduced proliferation. In vivo, overstabilization of HIF1, either genetically (von Hippel-Lindau deficient microglia) or by exposure to systemic hypoxia (mimicking vascular contributions to AD), reduces AßAM clustering and proliferation. We also observed increased Aß neuropathology in an AD mouse model exposed to hypoxia that mimics the loss of function of genetic AD risk genes. In the AD hippocampus, the upregulation of HIF1a and HIF1 target genes correlates with the presence of "nude" plaques (i.e., with reduced microglial coverage) in a hypoxia-prone brain area and the increase of Aß plaque-associated dystrophic neurites. Thus, low oxygen levels, a modifiable AD risk factor, disrupt microglial mitochondrial metabolism and converge with genetic susceptibility to cause AD microglial dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.