The primary components of two new candidate events (GW190403 051519 and GW190426 190642) fall in the mass gap predicted by pair-instability supernova theory. We also expand the population of binaries with significantly asymmetric mass ratios reported in GWTC-2 by an additional two events (q < 0.61 and q < 0.62 at 90% credibility for GW190403 051519 and GW190917 114630 respectively), and find that 2 of the 8 new events have effective inspiral spins χ eff > 0 (at 90% credibility), while no binary is consistent with χ eff < 0 at the same significance.
We report the observation of gravitational waves from two compact binary coalescences in LIGO's and Virgo's third observing run with properties consistent with neutron star-black hole (NSBH) binaries. The two events are named GW200105_162426 and GW200115_042309, abbreviated as GW200105 and GW200115; the first was observed by LIGO Livingston and Virgo and the second by all three LIGO-Virgo detectors. The source of GW200105 has component masses -+ 8.9 1.5 1.2 and 130 Gpc yr 69 112 3 1 under the assumption of a broader distribution of component masses.
X-ray-diffraction data have been obtained on Si in a diamond anvil cell to pressures of ,...,50 OPa. Crystallographic data are presented in phase I (cubic, diamond), II (tetragonal, I3-Sn), V (simple hexagonal), VII (hexagonal close-packed), and the metastable phase III [body-centered-cubic (BC8)] and on the coexistence of the phases. Comparison is made between these data and the predictions of ab initio calculations for these structures and their equations of state.
We report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGO's and Advanced Virgo's third observing run (O3) combined with upper limits from the earlier O1 and O2 runs. Unlike in previous observing runs in the advanced detector era, we include Virgo in the search for the GWB. The results of the search are consistent with uncorrelated noise, and therefore we place upper limits on the strength of the GWB. We find that the dimensionless energy density ⌦GW 5.8 ⇥ 10 9 at the 95% credible level for a flat (frequencyindependent) GWB, using a prior which is uniform in the log of the strength of the GWB, with 99% of the sensitivity coming from the band 20-76.6 Hz; ⌦GW(f ) 3.4 ⇥ 10 9 at 25 Hz for a power-law GWB with a spectral index of 2/3 (consistent with expectations for compact binary coalescences), in the band 20-90.6 Hz; and ⌦GW(f ) 3.9 ⇥ 10 10 at 25 Hz for a spectral index of 3, in the band 20-291.6 Hz. These upper limits improve over our previous results by a factor of 6.0 for a flat GWB, 8.8 for a spectral index of 2/3, and 13.1 for a spectral index of 3. We also search for a GWB arising from scalar and vector modes, which are predicted by alternative theories of gravity; we do not find evidence of these, and place upper limits on the strength of GWBs with these polarizations. We demonstrate that there is no evidence of correlated noise of magnetic origin by performing a Bayesian analysis that allows for the presence of both a GWB and an e↵ective magnetic background arising from geophysical Schumann resonances. We compare our upper limits to a fiducial model for the GWB from the merger of compact binaries, updating the model to use the most recent datadriven population inference from the systems detected during O3a. Finally, we combine our results with observations of individual mergers and show that, at design sensitivity, this joint approach may yield stronger constraints on the merger rate of binary black holes at z & 2 than can be achieved with individually resolved mergers alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.