Hedgehog (HH)/GLI signaling plays a critical role in epidermal development and basal cell carcinoma. Here, we provide evidence that epidermal growth factor receptor (EGFR) signaling modulates the target gene expression profile of GLI transcription factors in epidermal cells. Using expression profiling and quantitative reverse transcriptase PCR, we identified a set of 19 genes whose transcription is synergistically induced by GLI1 and parallel EGF treatment. Promoter studies of a subset of GLI/EGF-regulated genes, including the genes encoding interleukin-1 antagonist IL1R2, Jagged 2, cyclin D1, S100A7, and S100A9, suggest convergence of EGFR and HH/GLI signaling at the level of promoters of selected direct GLI target genes. Inhibition of EGFR and MEK/ERK but not of phosphatidylinositol 3-kinase/AKT abrogated synergistic activation of GLI/EGF target genes, showing that EGFR can signal via RAF/MEK/ ERK to cooperate with GLI proteins in selective target gene regulation. Coexpression of the GLI/EGF target IL1R2, EGFR, and activated ERK1/2 in human anagen hair follicles argues for a cooperative role of EGFR and HH/GLI signaling in specifying the fate of outer root sheath (ORS) cells. We also show that EGF treatment neutralizes GLI-mediated induction of epidermal stem cell marker expression and provide evidence that EGFR signaling is essential for GLI-induced cell cycle progression in epidermal cells. The results suggest that EGFR signaling modulates GLI target gene profiles which may play an important regulatory role in ORS specification, hair growth, and possibly cancer.
The GLI transcription factors mediate the hedgehog signal in development and carcinogenesis. Basal cell carcinoma can be caused by overexpression of either GLI1 or GLI2. Though GLI1 and GLI2 have identical or very similar DNA binding specificities, some of their activities are overlapping, some are clearly distinct. We analyzed target gene specificities of GLI1 and constitutively active GLI2 (GLI2DeltaN) by global expression profiling in an inducible, well-characterized HaCaT keratinocyte expression system. Four hundred fifty-six genes up- or downregulated at least twofold were identified. GLI target gene profiles correlated well with the biological activities of these transcription factors in hair follicles and basal cell carcinoma. Upregulation of largely overlapping sets of target genes was effected by both factors, repression occurred predominantly in response to GLI2. Also, significant quantitative differences in response to GLI1 and GLI2DeltaN were found for a small number of activated genes. Since we have not detected a putative processed GLI2 repressor, these results point to specific but indirect target gene repression by GLI2DeltaN via preferential activation of one or more negative regulators.
Perceptual load of an attended task influences the processing of irrelevant background stimuli. In a series of behavioral, functional magnetic resonance (fMRI) and electroencephalography (EEG) experiments we examined the influence of working memory (WM) load related to a relevant visual stimulus on the processing of irrelevant backgrounds. We further addressed two open questions about the mechanism of load-dependent modulation: (i) is this modulation dependent on regional activity (i.e. phasic)? (ii) At what processing stage does this modulation take place? Load was manipulated by a WM task and concurrently the processing of irrelevant visual objects was assessed with fMRI and EEG. To examine the dependency of this modulation on intrinsic activity, we varied the activity level of visual areas by presenting objects with different levels of degradation. Activity in the lateral occipital complex (LOC) increased with object visibility and was phasically modulated by WM load. Event related potentials revealed that this phasic modulation occurred approximately 170 ms after stimulus onset, indicative of an early selection under high load. The results indicate a phasic modulatory effect of WM load on visual object processing in the LOC that is comparable to the effects found for perceptual load manipulations.
BackgroundThe GLI transcription factors, mediators of the hedgehog signal bind with high affinity to the consensus sequence GACCACCCA. The affinity of variant single substitutions in GLI binding sites has been measured systematically, but the affinities of the variant binding sites appears low compared to the frequency of occurrence of variant sites in known GLI target gene promoters.ResultsWe quantified transcriptional activation by GLI using PTCH1 promoter based luciferase reporters containing all single substitutions of the GLI consensus binding site. As expected variants with very low affinity did not activate the reporter. Many lower affinity binding sequences are, however, functional in the presence of moderate GLI concentration. Using two natural non-consensus GLI site promoters we showed that substitution of the variant sequences by consensus leads to comparable activity.ConclusionsVariant GLI binding sites with relatively low affinity can within natural promoters lead to strong transcriptional activation. This may facilitate the identification of additional direct GLI target genes.
Hedgehog (HH) signaling in the epidermis is primarily mediated by the zinc finger transcription factors GLI1 and GLI2. Exquisite regulation of HH/GLI signaling is crucial for proper specification of the epidermal lineage and development of its derivatives, whereas dysregulation of HH/GLI signaling disrupts tissue homeostasis and causes basal cell carcinoma (BCC). Similarly, bone morphogenetic proteins (BMPs) and activins have been described as key signaling factors in the complex regulation of epidermal fate decisions, although their precise interplay with HH/GLI is largely elusive. Here we show that, in human epidermal cells, expression of the activin/BMP antagonist follistatin (FST) is predominantly up-regulated by the HH effector GLI2. Consistently, we found strong FST expression in the outer root sheath of human hair follicles and BCC. Detailed promoter analysis showed that two sequences with homology to the GLI consensus binding site are required for GLI2-mediated activation. Interestingly, activation of the FST promoter is highly GLI2-specific, because neither GLI1 nor GLI3 can significantly increase FST transcription. GLI2 specificity requires the presence of a 518-bp fragment in the proximal FST promoter region. On the protein level, sequences C-terminal to the zinc finger are responsible for GLI2-specific activation of FST transcription, pointing to the existence of GLI-interacting cofactors that modulate GLI target specificity. Our results reveal a key role of GLI2 in activation of the activin/BMP antagonist FST in response to HH signaling and provide new evidence for a regulatory interaction between HH and activin/BMP signaling in hair follicle development and BCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.