In magnetoencephalography (MEG) and electroencephalography (EEG), independent component analysis is widely applied to separate brain signals from artifact components. A number of different methods have been proposed for the automatic or semiautomatic identification of artifact components. Most of the proposed methods are based on amplitude statistics of the decomposed MEG/EEG signal. We present a fully automated approach based on amplitude and phase statistics of decomposed MEG signals for the isolation of biological artifacts such as ocular, muscle, and cardiac artifacts (CAs). The performance of different artifact identification measures was investigated. In particular, we show that phase statistics is a robust and highly sensitive measure to identify strong and weak components that can be attributed to cardiac activity, whereas a combination of different measures is needed for the identification of artifacts caused by ocular and muscle activity. With the introduction of a rejection performance parameter, we are able to quantify the rejection quality for eye blinks and CAs. We demonstrate in a set of MEG data the good performance of the fully automated procedure for the removal of cardiac, ocular, and muscle artifacts. The new approach allows routine application to clinical measurements with small effect on the brain signal.
Abstract-The automatic step detection is a crucial component for the analysis of vegetative locomotor coordination during monitoring the patients with Parkinson's disease. It is aimed to develop the algorithms for automatic step detection in the accelerometer signal, which will be integrated in sensor networks for neurological rehabilitation research. In this paper, three algorithms (Pan-Tompkins method, template matching method and peak detection based on combined dual-axial signals) are detailed described. Finally, these methods will be discussed by means of dis-and advantages.
In the fields of neurological rehabilitation and neurophysiological research there is a strong need for miniaturized, multi channel, battery driven, wireless networking DAQ systems enabling real-time digital signal processing and feedback experiments. For the scientific investigation on the passive auditory based 3D-orientation of Barn Owls and the scientific research on vegetative locomotor coordination of Parkinson's disease patients during rehabilitation we developed our 'intelligent Sensor and Actuator Network for Life science Application' (iSANLA) system. Implemented on the ultra low power microcontroller MSP430 sample rates up to 96 kHz have been realised for single channel DAQ. The system includes lossless local data storage up to 4 GB. With its outer dimensions of 20mm per rim and less than 15 g of weight including the Lithium-Ion battery our modular designed sensor node is thoroughly capable of up to eight channel recordings with 8 kHz sample rate each and provides sufficient computational power for digital signal processing ready to start our first mobile experiments. For wireless mobility a compact communication protocol based on the IEEE 802.15.4 wireless standard with net data rates up to 141 kbit/s has been implemented. To merge the lossless acquired data of the distributed iNODEs a time synchronization protocol has been developed preserving causality. Hence the necessary time synchronous start of the data acquisition inside a network of multiple sensors with a precision better than the highest sample rate has been realized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.