EEA1 endosomes are believed to function mainly in down-regulating EGFR signaling, and APPL endosomes are regarded as signaling endosomes. Evidence is given that EGF-induced, proliferative signaling occurs from EEA1 endosomes and is regulated by interaction between the signal-transducing protein GIV and the trimeric G protein Gαs.
In response to integrin receptor binding to the extracellular matrix, the multidomain docking protein p130 cas (Crk-associated substrate) activates various signaling cascades modulating such cellular processes as proliferation, migration, and apoptosis. During apoptosis, caspase-mediated cleavage of p130 cas generated a C-terminal 31-kDa fragment (31-kDa) and promoted morphological changes characteristic of apoptosis, including loss of focal adhesions, cell rounding, and nuclear condensation and fragmentation. By contrast, a p130 cas D748E mutant, which was unable to produce 31-kDa, attenuated the disassembly of focal adhesions at the bottom of the cell. 31-kDa contains a helix-loop-helix (HLH) domain that shows greater sequence homology with Id proteins than with basic HLH proteins, which enabled heterodimerization with E2A. Once coupled to E2A, 31-kDa was translocated to the cell nucleus, where it inhibited E2A-mediated p21 Waf1/Cip1 transcription. Moreover, overexpression of 31-kDa led to cell death that could be inhibited by treatment with the caspase inhibitor ZVAD-fluoromethyl ketone or by ectopic expression of E2A or p21 Waf1/Cip1 . These data suggest that during etoposide-induced apoptosis, 31-kDa promotes caspase-mediated cell death by inhibiting E2A-mediated activation of p21 Waf1/Cip1 transcription.
Human immunodeficiency virus -1 (HIV-1) enters the brain early during infection and leads to severe neuronal damage and central nervous system impairment. HIV-1 envelope glycoprotein 120 (gp120), a neurotoxin, undergoes intracellular trafficking and transport across neurons; however mechanisms of gp120 trafficking in neurons are unclear. Our results show that mannose binding lectin (MBL) that binds to the N-linked mannose residues on gp120, participates in intravesicular packaging of gp120 in neuronal subcellular organelles and also in subcellular trafficking of these vesicles in neuronal cells. Perinuclear MBL:gp120 vesicular complexes were observed and MBL facilitated the subcellular trafficking of gp120 via the endoplasmic reticulum (ER) and Golgi vesicles. The functional carbohydrate recognition domain of MBL was required for perinuclear organization, distribution and subcellular trafficking of MBL:gp120 vesicular complexes. Nocodazole, an agent that depolymerizes the microtubule network, abolished the trafficking of MBL:gp120 vesicles, suggesting that these vesicular complexes were transported along the microtubule network. Live cell imaging confirmed the association of the MBL:gp120 complexes with dynamic subcellular vesicles that underwent trafficking in neuronal soma and along the neurites. Thus, our findings suggest that intracellular MBL mediates subcellular trafficking and transport of viral glycoproteins in a microtubule-dependent mechanism in the neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.