Human strongyloidiasis a soil-transmitted infection caused by Strongyloides stercoralis is one of the most neglected amongst the so-called Neglected Tropical Diseases (NTDs). S. stercoralis is a nematode, which is distributed worldwide; it has been estimated that it could affect millions of people, mainly in tropical and subtropical endemic regions. The difficulties of diagnosis lead to infection rates being underreported. Asymptomatic patients have chronic infections that can lead to severe hyperinfection syndrome or disseminated strongyloidiasis in immunocompromised patients. Strongyloidiasis can easily be misdiagnosed because conventional faecal-based techniques lack of sensitivity for the morphological identification of infective larvae in faeces. None of the currently used molecular methods have used urine samples as an alternative to faecal samples for diagnosing strongyloidiasis. This study was thus aimed at comparing, for the first time, the use of a new loop-mediated isothermal amplification (LAMP) molecular assay (Strong-LAMP) to traditional methods on patients’ urine samples. Twenty-four urine samples were taken from patients included in a study involving two Spanish hospitals for strongyloidiasis screening using parasitological and serological tests. Strongyloides larvae were found in 11 patients’ faecal samples, thereby ascertaining that they had the disease. Other patients had high antibody titres but no larvae were found in their faeces. All urine samples were analysed by PCR and Strong-LAMP assay. No amplification occurred when using PCR. Strong-LAMP led to detecting S. stercoralis DNA in urine samples from patients having previously confirmed strongyloidiasis by parasitological tests and/or a suspicion of being infected by serological ones. The Strong-LAMP assay is a useful molecular tool for research regarding strongyloidiasis in human urine samples. After further validation, the Strong-LAMP assay could also be used for complementary and effective diagnosis of strongyloidiasis in a clinical setting.
In the past few years, relative frequencies of malaria parasite species in communities living in the Colombian Amazon riverside have changed, being Plasmodium vivax (61.4%) and Plasmodium malariae (43.8%) the most frequent. Given this epidemiological scenario, it is important to determine the species of anophelines involved in these parasites’ transmission. This study was carried out in June 2016 in two indigenous communities living close to the tributaries of the Amazon River using protected human bait. The results of this study showed a total abundance of 1,085 mosquitos, of which 99.2% corresponded to Anopheles darlingi . Additionally, only two anopheline species were found, showing low diversity in the study areas. Molecular confirmation of some individuals was then followed by evolutionary analysis by using the COI gene. Nested PCR was used for identifying the three Plasmodium species circulating in the study areas. Of the two species collected in this study, 21.0% of the An . darlingi mosquitoes were infected with P . malariae , 21.9% with P . vivax and 10.3% with Plasmodium falciparum . It exhibited exophilic and exophagic behavior in both study areas, having marked differences regarding its abundance in each community (Tipisca first sampling 49.4%, Tipisca second sampling 39.6% and Doce de Octubre 10.9%). Interestingly, An . mattogrossensis infected by P . vivax was found for the first time in Colombia (in 50% of the four females collected). Analysis of An . darlingi COI gene diversity indicated a single population maintaining a high gene flow between the study areas. The An . darlingi behavior pattern found in both communities represents a risk factor for the region’s inhabitants living/working near these sites. This highlights the need for vector control efforts such as the use of personal repellents and insecticides for use on cattle, which must be made available in order to reduce this Anopheline’s abundance.
Foot-and-mouth disease (FMD) is a highly contagious viral disease, which has been reported for over 100 years, and against which the struggle has lasted for the same amount of time. It affects individuals from the order Artiodactyla, such as cattle, swine, sheep, wild animals from this order, and a few non-cloven hoofed species, such as mice and elephants. FMD causes large-scale economic losses for agricultural production systems; morbidity is almost 100% in an affected population, accompanied by a high mortality rate in young animals due to myocarditis or an inability to suckle if a mother is ill. The aetiological agent is an Aphthovirus from the family Picornaviridae, having seven serotypes: A, O, C, SAT1, SAT2, SAT3, and Asia 1. Serotype variability means that an immune response is serospecific and vaccines are thus designed to protect against each serotype independently. A host’s adaptive immune response is key in defence against pathogens; however, this virus uses successful strategies (along with most microorganisms) enabling it to evade a host’s immune system to rapidly and efficiently establish itself within such host, and thus remain there. This review has been aimed at an in-depth analysis of the immune response in cattle and swine regarding FMD virus, the possible evasion mechanisms used by the virus and describing some immunological differences regarding these species. Such aspects can provide pertinent knowledge for developing new FMD control and prevention strategies.
Nowadays, safe and efficacious vaccines represent powerful and cost-effective tools for global health and economic growth. In the veterinary field, these are undoubtedly key tools for improving productivity and fighting zoonoses. However, cases of persistent infections, rapidly evolving pathogens having high variability or emerging/re-emerging pathogens for which no effective vaccines have been developed point out the continuing need for new vaccine alternatives to control outbreaks. Most licensed vaccines have been successfully used for many years now; however, they have intrinsic limitations, such as variable efficacy, adverse effects, and some shortcomings. More effective adjuvants and novel delivery systems may foster real vaccine effectiveness and timely implementation. Emerging vaccine technologies involving nanoparticles such as self-assembling proteins, virus-like particles, liposomes, virosomes, and polymeric nanoparticles offer novel, safe, and high-potential approaches to address many vaccine development-related challenges. Nanotechnology is accelerating the evolution of vaccines because nanomaterials having encapsulation ability and very advantageous properties due to their size and surface area serve as effective vehicles for antigen delivery and immunostimulatory agents. This review discusses the requirements for an effective, broad-coverage-elicited immune response, the main nanoplatforms for producing it, and the latest nanovaccine applications for fighting animal pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.