One of the main avocado diseases in southern Spain is white root rot caused by the fungus Rosellinia necatrix Prill. The use of organic soil amendments to enhance the suppressiveness of natural soil is an inviting approach that has successfully controlled other soilborne pathogens. This study tested the suppressive capacity of different organic amendments against R. necatrix and analyzed their effects on soil microbial communities and enzymatic activities. Two-year-old avocado trees were grown in soil treated with composted organic amendments and then used for inoculation assays. All of the organic treatments reduced disease development in comparison to unamended control soil, especially yard waste (YW) and almond shells (AS). The YW had a strong effect on microbial communities in bulk soil and produced larger population levels and diversity, higher hydrolytic activity and strong changes in the bacterial community composition of bulk soil, suggesting a mechanism of general suppression. Amendment with AS induced more subtle changes in bacterial community composition and specific enzymatic activities, with the strongest effects observed in the rhizosphere. Even if the effect was not strong, the changes caused by AS in bulk soil microbiota were related to the direct inhibition of R. necatrix by this amendment, most likely being connected to specific populations able to recolonize conducive soil after pasteurization. All of the organic amendments assayed in this study were able to suppress white root rot, although their suppressiveness appears to be mediated differentially.
The goal of this mini review is to summarize the relevant contribution of some beneficial traits to the behavior of the species
Pseudomonas chlororaphis
, and using that information, to give a practical point of view using the model biocontrol strain
P. chlororaphis
PCL1606 (PcPCL1606). Among the group of plant-beneficial rhizobacteria,
P. chlororaphis
has emerged as a plant- and soil-related bacterium that is mainly known because of its biological control of phytopathogenic fungi. Many traits have been reported to be crucial during the multitrophic interaction involving the plant, the fungal pathogen and the soil environment. To explore the different biocontrol-related traits, the biocontrol rhizobacterium PcPCL1606 has been used as a model in recent studies. This bacterium is antagonistic to many phytopathogenic fungi and displays effective biocontrol against fungal phytopathogens. Antagonistic and biocontrol activities are directly related to the production of the compound 2-hexyl, 5-propyl resorcinol (HPR), despite the production of other antifungal compounds. Furthermore, PcPCL1606 has displayed additional traits regarding its fitness in soil and plant root environments such as soil survival, efficient plant root colonization, cell-to-cell interaction or promotion of plant growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.