The physiological role of the gastrointestinal microbiota has become an important subject of nutrition research in pigs in the past years, and the importance of intestinal microbial activity in the etiology of disease is doubtless. This review summarizes the recent knowledge related to the microbial ecology of protein fermentation and the appearance of protein-derived metabolites along the pig intestine. The amount of fermentable protein depends on factors such as dietary protein concentration, protein digestibility due to secondary or tertiary structure, the interaction with dietary compounds or anti-nutritional factors, and the secretion of endogenous proteins into the gut lumen. High protein diets increase the luminal concentrations and epithelial exposure to putatively toxic metabolites and increase the risk for post-weaning diarrhea, but the mechanisms are not yet clarified. Although the use of fermentable carbohydrates to reduce harmful protein-derived metabolites in pigs is well-established, recent studies suggest that the inclusion of fermentable carbohydrates into diets with low protein digestibility or high dietary protein level may not ameliorate all negative effects with regard to epithelial response. Based on the current knowledge, the use of diets with low levels of high-quality protein may help to reduce the risk for intestinal disease in young pigs.
The present study investigated the influence of bacterial metabolites on monocarboxylate transporter 1 (MCT1) expression in pigs using in vivo, ex vivo and in vitro approaches. Piglets (n 24) were fed high-protein (26 %) or low-protein (18 %) diets with or without fermentable carbohydrates. Colonic digesta samples were analysed for a broad range of bacterial metabolites. The expression of MCT1, TNF-a, interferon g (IFN-g) and IL-8 was determined in colonic tissue. The expression of MCT1 was lower and of TNF-a and IL-8 was higher with high-protein diets (P, 0·05). MCT1 expression was positively correlated with L-lactate, whereas negatively correlated with NH 3 and putrescine (P,0·05). The expression of IL-8 and TNF-a was negatively correlated with L-lactate and positively correlated with NH 3 and putrescine, whereas the expression of IFN-g was positively correlated with histamine and 4-ethylphenol (P,0·05). Subsequently, porcine colonic tissue and Caco-2 cells were incubated with Na-butyrate, NH 4 Cl or TNF-a as selected bacterial metabolites or mediators of inflammation. Colonic MCT1 expression was higher after incubation with Na-butyrate (P,0·05) and lower after incubation with NH 4 Cl or TNF-a (P,0·05). Incubation of Caco-2 cells with increasing concentrations of these metabolites confirmed the up-regulation of MCT1 expression by Na-butyrate (linear, P, 0·05) and down-regulation by TNF-a and NH 4 Cl (linear, P,0·05). The high-protein diet decreased the expression of MCT1 in the colon of pigs, which appears to be linked to NH 3 -and TNF-a-mediated signalling.
We examined the influence of dietary fermentable protein (fCP) and fermentable carbohydrates (fCHO) on the colonic epithelial response to histamine in pigs. Thirty-two weaned piglets were fed 4 diets in a 2 × 2 factorial design with low fCP/low fCHO, low fCP/high fCHO, high fCP/low fCHO and high fCP/high fCHO. After 21-23 days, the pigs were killed and tissue from the proximal colon was stimulated with carbachol, histamine, PGE2 or sodium hydrogen sulphide in Ussing chambers. Changes in short-circuit current and tissue conductance were measured. Diamine oxidase, histamine N-methyltransferase, stem cell growth factor receptor, Fc-epsilon receptor I and cystic fibrosis transmembrane conductance regulator gene expression was determined. Activities of diamine oxidase and histamine N-methyltransferase and numbers of colonic mast cells were measured. The change in the short-circuit current in response to histamine was lower (P = 0.002) and tended to be lower for PGE2 (P = 0.053) in high fCP groups compared to low fCP groups, irrespective of fCHO. Additionally, the change in tissue conductance after the application of histamine was lower (P = 0.005) in the high fCP groups. The expression of histamine N-methyltransferase mRNA (P = 0.033) and the activities of diamine oxidase (P = 0.001) and histamine N-methyltransferase (P = 0.006) were higher with high fCP in comparison with low fCP. The expression of mast cell markers, stem cell growth factor receptor (P = 0.005) and Fc-epsilon receptor I (P = 0.049) was higher with high fCP diets compared to diets low in fCP, whereas the mast cell count did not differ between groups. The expression of the cystic fibrosis transmembrane conductance regulator was reduced (P = 0.001) with high fCP diets compared to low fCP diets. The lower epithelial response to histamine and PGE2 and elevated epithelial histamine inactivation suggests an adaptation to high fCP diets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.