Los test de respuesta forzada son ampliamente utilizados para reducir el efecto de los diferentes tipos de sesgo en la respuesta asociados a los test psicológicos (por ejemplo, la aquiescencia o la deseabilidad social). Sin embargo, este tipo de test genera los denominados datos ipsativos, los cuales poseen propiedades que hacen desaconsejable la aplicación de las técnicas clásicas de análisis factorial para su evaluación psicométrica. Pese a ello, en la práctica, muchos investigadores siguen empleando estos procedimientos para analizar los ítems de repuesta forzada; esto lleva necesariamente a conclusiones erróneas. El presente trabajo expone las propiedades analíticas de los ítems de respuesta forzada, así como un ejemplo que ilustra cómo afectan estas propiedades a la aplicación de las técnicas estadísticas clásicas y conducen a interpretaciones erróneas. Adicionalmente, se presenta una de las principales alternativas para analizar este tipo de datos basada en el modelo de juicio comparativo de Thurstone, así como los resultados de un estudio de simulación que ilustra su aplicación y efectividad en la recuperación de la estructura factorial originalFactor analysis of forced-choice items: A review and an example. Forced-choice tests are widely used in order to reduce the impact of different response set biases typically associated to psychological tests (e.g. acquiescence or social desirability). However, these tests produce ipsative data which have undesirable properties, thereby making an inappropriate application of classical factor analysis techniques for psychometric evaluation commonly used by researchers. This paper explains the analytical properties of forced-choice tests, along with an example that illustrates how these properties have an impact on the application of conventional statistical techniques and produce improper results. Additionally, one of the current proposals is presented in order to analyze these data based on the comparative judgment model by Thurstone, along with the results of a simulation study which illustrates its implementation and effectiveness in recovering the original factor structureEste trabajo ha sido parcialmente financiado por el proyecto 2012-31958 del Ministerio de Economía y Competitividad de España
Kolb’s Learning Style Inventory (LSI) continues to generate a great debate among researchers, given the contradictory evidence resulting from its psychometric properties. One primary criticism focuses on the artificiality of the results derived from its internal structure because of the ipsative nature of the forced-choice format. This study seeks to contribute to the resolution of this debate. A short version of Kolb’s LSI with a forced-choice format and an additional inventory scored on a Likert scale was completed by a sample of students of the University Católica del Norte in Antofagasta, Chile. The data obtained from the two forms of the reduced version of the LSI were compared using principal component analysis, confirmatory factor analysis, and the Thurstonian Item Response Theory model. The results support the hypothesis of the existence of four learning mode dimensions. However, they do not support the existence of the learning styles as proposed by Kolb, indicating that said reports are the product of the artificial structure generated by the ipsative forced-choice format .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.