Objective-The differentiation of mesenchymal stem cells (MSCs) into chondrocytes provides an attractive basis for the repair and regeneration of articular cartilage. Under clinical conditions, chondrogenesis will often need to occur in the presence of inflammatory mediators produced in response to injury or disease. Here we examine the effect of two important inflammatory cytokines, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), on the chondrogenic behavior of human MSCs.Methods-Aggregate cultures of MSCs recovered from the femoral intermedullary canal were used. Chondrogenesis was assessed by the expression of relevant transcripts by quantitative RT-PCR and examination of aggregates by histology and immunohistochemistry. The possible involvement of NF-κB in mediating the effects of IL-1β was examined by delivering a luciferase reporter construct and a dominant negative inhibitor of NF-κB (srIκB), with adenovirus vectors.Results-Both IL-1β and TNF-α inhibited chondrogenesis in a dose-dependent manner. This was associated with a marked activation of NF-κB. Delivery of srIκB abrogated the activation of NF-κB and rescued the chondrogenic response. Although expression of type X collagen followed this pattern, other markers of hypertrophic differentiation responded differently. Matrix metalloproteinase-13 was induced by IL-1β in a NF-κB dependent fashion. Alkaline phosphatase activity, in contrast, was inhibited by IL-1β regardless of srIκB delivery.Conclusions-Cell-based repair of lesions in articular cartilage will be compromised in inflamed joints. Strategies for enabling repair under these conditions include the use of specific antagonists of individual pyrogens, such as IL-1 and TNF, or the targeting of important intracellular mediators, such as NF-κB. There are two general strategies to harnessing MSCs for this purpose. In a tissue engineering approach, MSCs are recovered from the patient and used to generate a graft that is subsequently implanted into the site of cartilage damage (4). Although the graft can be developed in a bioreactor into mature cartilage, there is increasing interest in grafting immature tissue, allowing chondrogenesis to occur in situ. The second strategy, which is already in wide clinical use, supplies MSCs to the defect by penetrating the subchondral bone, thereby allowing marrow to enter the lesion. Various related surgical techniques, including microfracture and subchondral drilling, are used for this purpose. These procedures have the convenience of being performed arthroscopically in large joints (1).Repair strategies that rely on the in situ differentiation of MSCs are attractive, but in many instances require chondrogenesis to take place within an inflamed environment. Intraarticular inflammation may result from disease, such as arthritis, or trauma, including the iatrogenic trauma of the cartilage repair surgery itself. Because interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) are major mediators of local inflammatory processes in joints, the present ...
The delivery of anti-arthritic genes to the synovial lining of joints is being explored as a strategy for the treatment of rheumatoid arthritis. In this study, we have investigated the use of VSV-G pseudotyped, HIV-1-based lentiviral vectors for gene delivery to articular tissues. Recombinant lentivirus containing a beta-galactosidase/neomycin resistance fusion gene under control of the elongation factor (EF) 1alpha promoter efficiently transduced human and rat synoviocytes and chondrocytes in cell culture. When directly injected into the knees of rats, this vector transduced synovial lining cells, but not other articular tissues such as cartilage. We also constructed a lentiviral vector containing the human interleukin-1 receptor antagonist (IL1RA) cDNA and examined transgene expression in vitro and in vivo following injection into the knee joints of rats. In immunocompetent animals, intra-articular IL1RA expression was high and persisted, at a sharply declining rate, for approximately 20 days. In immunocompromised rats, however, lentivirus-mediated intra-articular expression of human IL1RA was found to persist for at least 6 weeks. Extra-articular expression of the transgene was minimal. These results indicate that lentiviral vectors are capable of efficient in vivo gene transfer to synovium and merit further investigation as a means of providing long-term expression for gene-based treatments of arthritis.
Because articular cartilage has a poor regeneration capacity, numerous cell-based approaches to therapy are currently being explored. The present study involved the use of gene transfer as a means to provide sustained delivery of chondrogenic proteins to primary mesenchymal stem cells (MSCs). In previous work, we found that adenoviral-mediated gene transfer of transforming growth factor-beta1 (TGF-beta1) and bone morphogenetic protein 2 (BMP-2), but not insulin-like growth factor 1 (IGF-1), could be used to induce chondrogenic differentiation of MSCs in an aggregate culture system. In the present study, we examined the effects on chondrogenesis of these transgenes when delivered in combination. Cultures of bone marrow-derived MSCs were infected with 2.5 x 10(2) or 2.5 x 10(3) viral particles/cell of each adenoviral vector individually, or in combination, seeded into aggregates, and cultured for 3 weeks in a defined serum-free medium. Levels of transgene product in the medium were initially high, approximately 100 ng/mL TGF-beta1, 120 ng/mL BMP-2, and 80 ng/mL IGF-1 at day 3, and declined thereafter. We found that co-expression of IGF-1 and TGF-beta1, BMP-2, or both at low doses resulted in larger aggregates, higher levels of glycosaminoglycan synthesis, stronger staining for proteoglycans and collagen type II and X, and greater expression of cartilage-specific marker genes than with either transgene alone. Gene-induced chondrogenesis of MSCs using multiple genes that act synergistically may enable the administration of reduced viral doses in vivo and could be of considerable benefit for the development of cell-based therapies for cartilage repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.