The methods established are simple and can be used as a tool for the characterisation and quality control of pharmaceutical preparations containing these Passiflora extracts.
Pseudopterogorgia elisabethae is a common inhabitant of Caribbean reefs and is a well-known source of diterpenes with diverse biological activities. Notably, this octocoral is the sole source of the pseudopterosin family of anti-inflammatory diterpenes and is harvested to supply commercial demand for these metabolites. We have characterized the composition of the bacterial community associated with P. elisabethae collected from Providencia Island, Colombia, using both culture-dependent and culture-independent approaches. Culture-independent analysis revealed that the bacterial communities were composed of eight phyla, of which Proteobacteria was the most abundant. At the class level, bacterial communities were dominated by Gammaproteobacteria (82-87 %). Additionally, operational taxonomic units related to Pseudomonas and Endozoicomonas species were the most abundant phylotypes consistently associated with P. elisabethae colonies. Culture-dependent analysis resulted in the identification of 40 distinct bacteria classified as Bacilli (15), Actinobacteria (12), Gammaproteobacteria (9), Alphaproteobacteria (3), and Betaproteobacteria (1). Only one of the 40 cultured bacteria was closely related to a dominant phylotype detected in the culture-independent study, suggesting that conventional culturing techniques failed to culture the majority of octocoral-associated bacterial diversity. To the best of our knowledge, this is the first characterization of the bacterial diversity associated with P. elisabethae.
To expand the potential of pseudopterosins and seco-pseudopterosins isolated from the octocoral Pseudopterogorgia elisabethae of San Andrés and Providencia islands (southwest Caribbean Sea), we report the anti-microbial profile against four pathogenic microorganisms (Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Candida albicans) and report a more complete cytotoxic profile against five human cells lines (HeLa, PC-3, HCT116, MCF-7 and BJ) for the compounds PsG, PsP, PsQ, PsS, PsT, PsU, 3-O-acetyl-PsU, seco-PsJ, seco-PsK and IMNGD. For the cytotoxic profiles, all compounds evaluated showed moderate and non-selective activity against both tumor and normal cell lines, where PsQ and PsG were the most active compounds (GI50 values between 5.8 μM to 12.0 μM). With respect to their anti-microbial activity the compounds showed good and selective activity against the Gram-positive bacteria, while they did not show activity against the Gram-negative bacterium or yeast. PsU, PsQ, PsS, seco-PsK and PsG were the most active compounds (IC50 2.9–4.5 μM) against S. aureus and PsG, PsU and seco-PsK showed good activity (IC50 3.1–3.8 μM) against E. faecalis, comparable to the reference drug vancomycin (4.2 μM).
Three new cembranoid diterpenes, knightol (1), knightol acetate (2), and knightal (3), along with the known asperdiol (4) and asperdiol acetate (5), were isolated as major compounds from the sea whip Eunicea knighti collected from the Colombian Caribbean. The structures and absolute configurations of 1-5 were determined on the basis of spectroscopic analyses and by a combination of chemical and NMR methods, multiple correlations observed in a ROESY experiment, and using the modified Mosher method. Additionally, five semisynthetic compounds, 6-10, obtained during the chemical transformations of the natural compounds are here reported for the first time. All compounds were tested for antimicrobial activity against marine bacteria associated with heavily fouled surfaces and were also screened for antiquorum sensing (QS) activity. Compounds 1, 3, and 8 showed significant antimicrobial activity against bacterial isolates, and 1, 3, 7, and 8 showed excellent anti-QS inhibition activity measured by means of bioluminescence inhibition with biosensor model systems.
BackgroundWe are reporting for the first time the in vivo anti-inflammatory activity of extracts and fractions, and in vitro anti-inflammatory activity of pure compounds, all isolated from Pseudopterogorgia elisabethae collected at the Providencia (chemotype 1) and San Andrés (chemotype 2) Islands (SW Caribbean).MethodsExtracts from P. elisabethae were fractionated on silica gel to yield fractions: F-1 (pseudopterosins PsQ, PsS and PsU) and F-2 (amphilectosins A and B, PsG, PsK, PsP and PsT and seco-pseudopterosins seco-PsJ and seco-PsK) from chemotype 1, and F-3 (elisabethatrienol, 10-acetoxy-9-hydroxy- and 9-acetoxy-10-hydroxy-amphilecta-8,10,12,14-tetraenes (interconverting mixture) and amphilecta-8(13),11,14-triene-9,10-dione) from chemotype 2. By using preparative RP-HPLC and spectroscopic means, we obtained the pure PsG, PsK, PsP, PsQ, PsS, PsT, PsU, seco-PsK and the interconverting mixture of non-glycosylated diterpenes (IMNGD). The anti-inflammatory properties of extracts and fractions were evaluated using in vivo model "12-O-tetradecanoyl-phorbol-acetate (TPA)-induced mouse ear oedema". The activities of pure compounds and of the IMNGD were evaluated using in vitro assays myeloperoxidase (MPO) release (by human polymorphonuclear neutrophils (PMNs)), nitric oxide release (by J-774 cells) and scavenger activity on NO.ResultsIn the in vivo anti-inflammatory assay, extracts and F-3 showed low inhibition levels of inflammation compared to indomethacin, F-1 and F-2. Additionally, we evaluated the MPO release to the inflammation site, and found a marked inhibition of MPO levels by all extracts and fractions, even superior to the inhibition shown by indomethacin.Furthermore, in the MPO in vitro assay, IMNGD, PsQ, PsS, PsT and PsU, exhibited higher inhibition levels compared to dexamethasone and indomethacin. In the NO release in vitro, IMNGD, PsP and PsT were the most potent treatments. Finally, because the PsG, PsP and seco-PsK did not exhibit any NO scavenger activity, they should inhibit the inducible Nitric Oxide Synthase (iNOS) or other routes that influence this enzyme. Alternatively, PsQ, PsS, and PsU did show scavenger activity.ConclusionAll results presented contribute to demonstrate that the compounds isolated in this work from P. elisabethae are promising molecules with an interesting anti-inflammatory activity profile. Additionally, the results obtained could provide preliminary insights towards their structure-activity relationship.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.