Non-alcoholic fatty liver disease (NAFLD) is recognized as the most common type of chronic liver disease in Western countries. Insulin resistance is a key factor in the pathogenesis of NAFLD, the latter being considered as the hepatic component of insulin resistance or obesity. Adiponectin is the most abundant adipose-specific adipokine. There is evidence that adiponectin decreases hepatic and systematic insulin resistance, and attenuates liver inflammation and fibrosis. Adiponectin generally predicts steatosis grade and the severity of NAFLD; however, to what extent this is a direct effect or related to the presence of more severe insulin resistance or obesity remains to be addressed. Although there is no proven pharmacotherapy for the treatment of NAFLD, recent therapeutic strategies have focused on the indirect upregulation of adiponectin through the administration of various therapeutic agents and/or lifestyle modifications. In this adiponectin-focused review, the pathogenetic role and the potential therapeutic benefits of adiponectin in NAFLD are analyzed systematically.
BackgroundThe current increase of obesity and metabolic syndrome (MS) focuses attention on bisphenol-A (BPA), “obesogen” endocrine disruptor, main plastic component. Aim was to verify the role of BPA in metabolic alterations, insulin resistance, low grade inflammation and visceral obesity.MethodsA cross-sectional study was performed in 76 out of 139 environmentally exposed adult males, unselected Caucasian subjects, enrolled by routine health survey at the “Federico II” University of Naples outpatient facilities. BPA plasma levels (ELISA), metabolic risk factors, homeostasis model assessment of insulin resistance index, plasma monocyte chemoattractant protein 1, interleukin-6 (IL-6) and tumor necrosis factor-alpha were performed. Clinical and biochemical parameters have been compared with BPA and pro-inflammatory cytokines levels.ResultsIn total 24 subjects out of 76 (32%) presented with waist circumference (WC) >102 cm, 36 (47%) had impaired fasting glucose and 24 (32%) subjects had insulin resistance [11 out 52 (21%) with WC ≤102 cm and 13 out of 24 with WC >102 cm (54%), χ2 6.825, p = 0.009]. BPA and pro-inflammatory cytokine levels were significantly higher in subjects with visceral adiposity (WC > 102 cm). BPA correlated with WC, triglycerides, glucose homeostasis and inflammatory markers. At the multivariate analysis WC and IL-6 remained the main predictors of BPA.ConclusionsDetectable BPA plasma levels have been found also in our population. The strictly association between BPA and WC, components of MS, and inflammatory markers, further supports the BPA role in visceral obesity-related low grade chronic inflammation.
In the hypothalamic arcuate nucleus (ARC), proopiomelanocortin (POMC) neurons and the POMC-derived peptide α-melanocytestimulating hormone (α-MSH) promote satiety. POMC neurons receive orexin-A (OX-A)-expressing inputs and express both OX-A receptor type 1 (OX-1R) and cannabinoid receptor type 1 (CB 1 R) on the plasma membrane. OX-A is crucial for the control of wakefulness and energy homeostasis and promotes, in OX-1R-expressing cells, the biosynthesis of the endogenous counterpart of marijuana's psychotropic and appetite-inducing component Δ 9 -tetrahydrocannabinol, i.e., the endocannabinoid 2-arachidonoylglycerol (2-AG), which acts at CB 1 R. We report that OX-A/OX-1R signaling at POMC neurons promotes 2-AG biosynthesis, hyperphagia, and weight gain by blunting α-MSH production via CB 1 R-induced and extracellularsignal-regulated kinase 1/2 activation-and STAT3 inhibitionmediated suppression of Pomc gene transcription. Because the systemic pharmacological blockade of OX-1R by SB334867 caused anorectic effects by reducing food intake and body weight, our results unravel a previously unsuspected role for OX-A in endocannabinoid-mediated promotion of appetite by combining OX-induced alertness with food seeking. Notably, increased OX-A trafficking was found in the fibers projecting to the ARC of obese mice (ob/ob and high-fat diet fed) concurrently with elevation of OX-A release in the cerebrospinal fluid and blood of mice. Furthermore, a negative correlation between OX-A and α-MSH serum levels was found in obese mice as well as in human obese subjects (body mass index > 40), in combination with elevation of alanine aminotransferase and γ-glutamyl transferase, two markers of fatty liver disease. These alterations were counteracted by antagonism of OX-1R, thus providing the basis for a therapeutic treatment of these diseases.hypocretin-1 | cannabinoid type 1 receptor | 2-arachidonoylglycerol | α-melanocyte-stimulating hormone | hypothalamus E merging anatomical, biochemical, and pharmacological evidence supports a functional interaction between endocannabinoids and orexin-A (OX-A) (also known as hypocretin-1) in the hypothalamic regulation of appetite, energy expenditure, and metabolism (1). In hypothalamic neurons, the endocannabinoid 2-arachidonylglycerol (2-AG) is under the negative control of leptin (2) and acts through the cannabinoid receptor type 1 (CB 1 R) to promote appetite by activating several intracellular pathways, including mitogen-activated protein kinases of the extracellularsignal-regulated kinase (ERK) family (3). OX-A is an orexigenic neuropeptide expressed by neurons of the lateral hypothalamus (LH), which acts through the OX-A receptor type 1 (OX-1R) (4). Activation of OX-1R by OX-A signaling has been found to affect CB 1 R function by stimulating 2-AG biosynthesis via the phospholipase C/diacylglycerol lipase α (PLC/DAGL) pathway (5) and by enhancing ERK1/2 phosphorylation and activity in cells expressing both OX-1R and CB 1 R (6, 7). Proopiomelanocortin (POMC)-containing neurons represent t...
Although probiotics and prebiotics have been proposed in the treatment and prevention of patients with obesity-related NAFLD, their therapeutic use is not supported by high-quality clinical studies.
Atherosclerosis is a chronic inflammatory process of the vessel walls, and CD4+ T-cells are peculiar to both human and murine atherosclerotic lesions. There is a recent line of research favoring hypothetic allergic mechanisms in the genesis of atherosclerosis and, consequently, coronary artery disease (CAD), among which Interleukin (IL)-17 appears to be a key cytokine regulating local tissue inflammation.The objective was to add a piece of information on the role of IL-17 in the genesis of atherosclerosis. Eighty obese patients with normal liver enzyme levels but presenting with ultrasonographic evidence of NAFLD formed the population of this cross-sectional study. Anthropometric measures, data on excess adiposity, metabolic profile, serum concentrations of IL-17, eotaxin-3, IL-8, and CCL4/MIP1β, C-reactive protein, fibrinogen, ferritin, TNF-α, as well carotid intima-media thickness (IMT), a marker of atherosclerosis, and the main risk factors for CAD, such as blood pressure and smoking status, but also less determinant ones such as degree of NAFLD severity, Intramuscular Triglyceride storage and Resting Metabolic Rate were evaluated.Serum concentrations of Il-17 were detected as related to those of inflammatory cytokines, IL-6, IFN-γ and TNF-α. Furthermore, circulating levels of IL-17 were linked to those mirroring allergic process, IL-8, CCL4/MIP1β and eotaxin. Early atherosclerosis, evidenced as increased IMT, was not associated with circulating IL-17 levels. At multiple regression, IMT was predicted, other than by age, by the amount of the visceral adiposity, expressed as visceral adipose tissue at ultrasonography, and by serum eotaxin.In conclusion, a strong relationship was found between the IL-17-related chemokine eotaxin and IMT. The association found between the amount of visceral fat and circulating levels of eotaxin on the one hand, and IMT on the other, could reinforce the hypothesis that IL-17, released by the visceral adipose tissue, induces eotaxin secretion via the smooth muscle cells present in the atheromatosus vessels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.