Background: The Caserta and Naples areas in Campania Region experience heavy environmental contamination due to illegal waste disposal and burns, thus representing a valuable setting to develop a general model of human contamination with dioxins (PCDDs-PCDFs) and dioxin-like-PCBs (dl-PCBs). Methods: 94 breastfeeding women (aged 19–32 years; mean age 27.9 ± 3.0) were recruited to determine concentrations of PCDDs-PCDFs and dl-PCBs in their milk. Individual milk samples were collected and analyzed according to standard international procedures. A generalized linear model was used to test potential predictors of pollutant concentration in breast milk: age, exposure to waste fires, cigarette smoking, diet, and residence in high/low risk area (defined at high/low environmental pressure by a specific 2007 WHO report). A Structural Equation Model (SEM) analysis was carried out by taking into account PCDDs-PCDFs and dl-PCBs as endogenous variables and age, waste fires, risk area and smoking as exogenous variables. Results: All milk samples were contaminated by PCDDs-PCDFs (8.6 pg WHO-TEQ/98g fat ± 2.7; range 3.8–19) and dl-PCBs (8.0 pg WHO-TEQ/98g fat ± 3.7; range 2.5–24), with their concentrations being associated with age and exposure to waste fires (p < 0.01). Exposure to fires resulted in larger increases of dioxins concentrations in people living in low risk areas than those from high risk areas (p < 0.01). Conclusions: A diffuse human exposure to persistent organic pollutants was observed in the Caserta and Naples areas. Dioxins concentration in women living in areas classified at low environmental pressure in 2007 WHO report was significantly influenced by exposure to burns.
Background
Candida parapsilosis is increasingly responsible for invasive candidiasis in neonates. This study investigates phenotypic and genotypic features of C. parapsilosis microbial isolates and underlying clinical conditions associated with acquisition of C. parapsilosis in a neonatal intensive care unit (NICU) in Italy.MethodsIdentification of C. parapsilosis was performed by VITEK® 2 and MALDI TOF and confirmed by analysis of internal transcribed spacer ribosomal DNA sequences. Genotyping was performed by PCR fingerprinting. Antifungal susceptibility of strains was evaluated by microdilution. A case-control study was designed to identify risk factors for C. parapsilosis bloodstream infection.ResultsDuring the study period (April 2009- April 2012), C. parapsilosis was responsible for 6 umbilical catheter and 11 central catheter-associated bloodstream infection in 17 neonates in the NICU. Molecular typing identified identical fingerprinting profile in all C. parapsilosis isolates from neonates. Fifteen of 17 C. parapsilosis isolates were susceptible to all antifungal drugs, two isolates were resistant to fluconazole and intermediate susceptible to itraconazole. Low birthweight, gestational age and time to exposure to assisted ventilation were risk factors for C. parapsilosis infection in neonates in the NICU at univariate and multivariate analysis.Conclusion
C. parapsilosis bloodstream infections in the NICU were caused by a single epidemic clone. Low birthweight, gestational age and time to exposure to invasive devices, with predominance of assisted ventilation, were the clinical conditions associated with C. parapsilosis bloodstream infection in the NICU.Electronic supplementary materialThe online version of this article (doi:10.1186/s13052-017-0332-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.