This paper discusses the difficulties associated with the potential exploitation of the deep multi-seam resources east of the Daarby fault in the Waterberg coalfield using bord and pillar and longwall mining. Figure 1 illustrates the location of the Waterberg coalfield relative to other coalfields in South Africa, while Figure 2 shows the areas containing deep and shallow resources. The Waterberg resources are expected to contribute to South Africa's future energy requirements, and are currently exploited at the Grootegeluk open pit mine. Grootegeluk produces coal mainly for a power station, with the higher quality product supplied as metallurgical coal. The deposit is technically unique and challenging, being a multi-seam coal deposit with a total of 12 seams over a thickness of 110 m as shown in Figure 3, including Zone 5. There is currently limited knowledge on the multi-seam mining of the deep Waterberg resources. Multi-seam mining utilizing the bord and pillar method has been practised in South Africa before, but at a depth of less than 100 m in the Witbank coalfields. Multi-seam mining in thin seams has also been performed in the Natal coalfields at a depth of less than 160 m, but mostly using bord and pillar mining and secondary mining (partial pillar extraction).However, past experience with multi-seam mining at depths greater than 250 m in South Africa is limited. It is therefore critical to review multi-seam mining experience in other countries where the depth of mining is greater than 250 m. The research indicated that it is possible to mine seams with a low CMRR at high mining rates using longwall mining, although support for gateroads is expected to be expensive, time-consuming and onerous to install, and will impact gateroad development rates. It will not be possible to simultaneously mine zones in close proximity and failure of the interburden is predicted, thus dangerous mining conditions are anticipated. However, it will be possible to mine just two of the eleven zones using longwall mining. multi-seam mining, Waterberg, coal mining, longwall, coal mine roof rating (CMRR), Analysis of Multiple Seam Stability (AMSS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.