The bulk of familial breast cancer risk (∼70%) cannot be explained by mutations in the known predisposition genes, primarily BRCA1 and BRCA2. Underlying genetic heterogeneity in these cases is the probable explanation for the failure of all attempts to identify further high-risk alleles. While exome sequencing of non-BRCA1/2 breast cancer cases is a promising strategy to detect new high-risk genes, rational approaches to the rigorous pre-selection of cases are needed to reduce heterogeneity. We selected six families in which the tumours of multiple cases showed a specific genomic profile on array comparative genomic hybridization (aCGH). Linkage analysis in these families revealed a region on chromosome 4 with a LOD score of 2.49 under homogeneity. We then analysed the germline DNA of two patients from each family using exome sequencing. Initially focusing on the linkage region, no potentially pathogenic variants could be identified in more than one family. Variants outside the linkage region were then analysed, and we detected multiple possibly pathogenic variants in genes that encode DNA integrity maintenance proteins. However, further analysis led to the rejection of all variants due to poor co-segregation or a relatively high allele frequency in a control population. We concluded that using CGH results to focus on a sub-set of families for sequencing analysis did not enable us to identify a common genetic change responsible for the aggregation of breast cancer in these families. Our data also support the emerging view that non-BRCA1/2 hereditary breast cancer families have a very heterogeneous genetic basis.
In human hepatoma (Hep G2) cells and peripheral blood lymphocytes (HPBL) the cytokinesis-blocked micronuclei (MN) and fluorescent in situ hybridization (FISH) assays were applied to study aneugenic and clastogenic potentials of X-rays, directly and indirectly acting chemicals. Induction of MN was studied in vitro following treatment with X-rays, directly acting chemicals, such as methylmeth-anesulphonate (MMS), colchicine (COL), vincristine sulphate (VCS) and vinblastine sulphate (VBS), and indirectly acting agents, such as cyclophosphamide (CP), hexamethylphosphoramide (HMPA), 2-acetylaminofluorene (2-AAF) and 4-acetylaminofluorene (4-AAF). Depending on the presence of the fluorescent signal in the MN following FISH with a human DNA centromeric probe, MN in the binucleated Hep G2 cells and lymphocytes were scored as centromere-positive or centromere-negative, representing an aneugenic and clastogenic event respectively. In the controls approximately 50% of spontaneously occurring MN were centromere-positive. Treatment of human hepatoma cells and HPBL (in vitro) with potent aneugens such as COL, VCS and VBS increased the number of MN in a dose-dependent manner; of these 75-93% were centromere-positive. X-irradiation induced MN in a dose-related manner in binucleated Hep G2 cells and HPBL, of which 33-40% were centromere-positive, which demonstrates the significant aneugenic potentials of X-rays. Strong clastogenic activity was observed with MMS and frequency of centromere-positive MN was low: approximately 20 and 30% for HPBL and Hep G2 cells respectively. In Hep G2 cells significant aneugenic activity was found with indirectly acting promutagens/procarcinogens such as HMPA and 2-AAF, in contrast to CP, which came out as a potent clastogen. The non-carcinogen 4-AAF was not able to induce an increase in the frequency of MN in Hep G2 cells. All indirectly acting chemicals tested came out negative when HPBL were used as targets for DNA damage. The results presented correlate positively with data from in vivo assays and indicate that the Hep G2 cell system is a suitable bioactivation system (in vitro) for evaluating the clastogenic and aneugenic potentials of chemicals which require exogenous metabolic activations in order to exert their mutagenic potential.
The 1100delC mutation in the CHEK2 gene has a carrier frequency of up to 1.5% in individuals from North-West Europe. Women heterozygous for 1100delC have an increased breast cancer risk (odds ratio 2.7). To explore the prevalence and clinical consequences of 1100delC homozygosity in the Netherlands, we genotyped a sporadic breast cancer hospital-based cohort, a group of non-BRCA1/2 breast cancer families, and breast tumors from a tumor tissue bank. Three 1100delC homozygous patients were found in the cohort of 1434 sporadic breast cancer patients, suggesting an increased breast cancer risk for 1100delC homozygotes (odds ratio 3.4, 95% confidence interval 0.4-32.6, P ¼ 0.3). Another 1100delC homozygote was found in 592 individuals from 108 non-BRCA1/2 breast cancer families, and two more were found after testing 1706 breast tumors and confirming homozygosity on their wild-type DNA. Follow-up data was available for five homozygous patients, and remarkably, three of them had developed contralateral breast cancer. A possible relationship between 1100delC and lung cancer risk was investigated in 457 unrelated lung cancer patients but could not be confirmed. Due to the small number of 1100delC homozygotes identified, the breast cancer risk estimate associated with this genotype had limited accuracy but is probably higher than the risk in heterozygous females. Screening for CHEK2 1100delC could be beneficial in countries with a relatively high allele frequency.
XRCC2 genetic variants have been associated with breast cancer susceptibility. However, association studies have been complicated because XRCC2 variants are extremely rare and consist mainly of amino acid substitutions whose grouping is sensitive to misclassification by the predictive algorithms. We therefore functionally characterized variants in XRCC2 by testing their ability to restore XRCC2-DNA repair deficient phenotypes using a cDNA-based complementation approach. While the protein-truncating variants p.Leu117fs, p.Arg215*, and p.Cys217* were unable to restore XRCC2 deficiency, 19 out of 23 missense variants showed no or just a minor (<25%) reduction in XRCC2 function. The remaining four (p.Cys120Tyr, p.Arg91Trp, p.Leu133Pro, and p.Ile95Leu) had a moderate effect. Overall, measured functional effects correlated poorly with those predicted by in silico analysis. After regrouping variants from published case-control studies based on the functional effect found in this study and reanalysis of the prevalence data, there was no longer evidence for an association with breast cancer. This suggests that if breast cancer susceptibility alleles of XRCC2 exist, they are likely restricted to protein-truncating variants and a minority of missense changes. Our study emphasizes the use of functional analyses of missense variants to support variant classification in association studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.