This study identified and characterised 21 novel FH mutations and demonstrated that PRCCII can be the only one manifestation of HLRCC. Due to the incomplete penetrance of HLRCC, the authors propose to extend the FH mutation analysis to every patient with PRCCII occurring before 40 years of age or when renal tumour harbours characteristic histologic features, in order to discover previously ignored HLRCC affected families.
Purpose Structural variants (SVs) may be an underestimated cause of hereditary cancer syndromes given the current limitations of short-read next-generation sequencing. Here we investigated the utility of long-read sequencing in resolving germline SVs in cancer susceptibility genes detected through short-read genome sequencing. Methods Known or suspected deleterious germline SVs were identified using Illumina genome sequencing across a cohort of 669 advanced cancer patients with paired tumor genome and transcriptome sequencing. Candidate SVs were subsequently assessed by Oxford Nanopore long-read sequencing. Results Nanopore sequencing confirmed eight simple pathogenic or likely pathogenic SVs, resolving three additional variants whose impact could not be fully elucidated through short-read sequencing. A recurrent sequencing artifact on chromosome 16p13 and one complex rearrangement on chromosome 5q35 were subsequently classified as likely benign, obviating the need for further clinical assessment. Variant configuration was further resolved in one case with a complex pathogenic rearrangement affecting TSC2. Conclusion Our findings demonstrate that long-read sequencing can improve the validation, resolution, and classification of germline SVs. This has important implications for return of results, cascade carrier testing, cancer screening, and prophylactic interventions.
We report a case of early-onset pancreatic ductal adenocarcinoma in a patient harboring biallelic MUTYH germline mutations, whose tumor featured somatic mutational signatures consistent with defective MUTYH -mediated base excision repair and the associated driver KRAS transversion mutation p.Gly12Cys. Analysis of an additional 730 advanced cancer cases ( N = 731) was undertaken to determine whether the mutational signatures were also present in tumors from germline MUTYH heterozygote carriers or if instead the signatures were only seen in those with biallelic loss of function. We identified two patients with breast cancer each carrying a pathogenic germline MUTYH variant with a somatic MUTYH copy loss leading to the germline variant being homozygous in the tumor and demonstrating the same somatic signatures. Our results suggest that monoallelic inactivation of MUTYH is not sufficient for C:G>A:T transversion signatures previously linked to MUTYH deficiency to arise ( N = 9), but that biallelic complete loss of MUTYH function can cause such signatures to arise even in tumors not classically seen in MUTYH -associated polyposis ( N = 3). Although defective MUTYH is not the only determinant of these signatures, MUTYH germline variants may be present in a subset of patients with tumors demonstrating elevated somatic signatures possibly suggestive of MUTYH deficiency (e.g., COSMIC Signature 18, SigProfiler SBS18/SBS36, SignatureAnalyzer SBS18/SBS36).
Lynch syndrome is defined by the presence of germline mutations in mismatch repair (MMR) genes. Several models have been recently devised that predict mutation carrier status (Myriad Genetics, Wijnen, Barnetson, PREMM and MMRpro models). Families at moderate-high risk for harboring a Lynch-associated mutation, referred to the BC Cancer Agency (BCCA) Hereditary Cancer Program (HCP), underwent mutation analysis, immunohistochemistry and/or microsatellite testing. Seventy-two tested cases were included. Twenty-five patients were mutation positive (34.7%) and 47 were mutation negative (65.3%). Nineteen of 43 patients who were both microsatellite stable and normal on immunohistochemistry for MLH1 and MSH2 were also genotyped for mutations in these genes; all 19 were negative for MMR gene mutations. Model-derived probabilities of harboring a MMR gene mutation in the proband were calculated and compared to observed results. The area under the ROC curves were 0.75 (95%CI; 0.63-0.87), 0.86 (0.7-0.96), 0.89 (0.82-0.97), 0.89 (0.81-0.98) and 0.93 (0.86-0.99) for the Myriad, Barnetson, Wijnen, MMRpro and PREMM models, respectively. The Amsterdam II criteria had a sensitivity and specificity of 0.76 and 0.74, respectively, in this cohort. The PREMM model demonstrated the best performance for predicting carrier status based on the positive likelihood ratios at the >10%, >20% and >30% probability thresholds. In this referred cohort, the PREMM model had the most favorable concordance index and predictive performance for carrier status based on the positive LR. These prediction models (PREMM, MMRPro and Wijnen) may soon replace the Amsterdam II and revised Bethesda criteria as a prescreening tool for Lynch mutations.In Canada and the United States, colorectal cancer (CRC) is the third most common diagnosed cancer and the second leading cause of all cancer deaths. 1,2 Among those affected, up to 15% of CRC cases can be attributed to individuals with inherited susceptibilities, most notably the familial adenomatous polyposis (FAP) and the hereditary nonpolyposis colorectal cancer (HNPCC) syndromes. 3 The HNPCC syndrome is more common than FAP, accounting for up to 5% of all CRC diagnoses; whereas FAP accounts for less than 1%. 3 Multiple adenomatous polyps, often greater than 100 arising at an early age, characterize the FAP phenotype. The clinical manifestation of the HNPCC syndrome phenotype is not as apparent as its FAP counterpart. Patients with HNPCC are often asymptomatic until pre-
Background: Recent guidelines recommend consideration of germline testing for all newly diagnosed pancreatic ductal adenocarcinoma (PDAC). The primary aim of this study was to determine the burden of hereditary cancer susceptibility in PDAC.A secondary aim was to compare genetic testing uptake rates across different modes of genetic counselling. Patients and Methods: All patients diagnosed with PDAC in the province of British Columbia, Canada referred to a population-based hereditary cancer program were eligible for multi-gene panel testing, irrespective of cancer family history. Any healthcare provider or patients themselves could refer. Results: A total of 305 patients with PDAC were referred between July 2016 and January 2019. Two hundred thirty-five patients attended a consultation and 177 completed index germline genetic testing. 25/177 (14.1%) of unrelated patients had a pathogenic variant (PV); 19/25 PV were in known PDAC susceptibility genes with cancer screening or risk-reduction implications. PDAC was significantly associated with PV in ATM (OR, 7.73; 95% CI, 3.10 to 19.33, P = 6.14E-05) when comparing age and gender and ethnicity-matched controls tested on the same platform. The overall uptake rate for index testing was 59.2% and was significantly higher with 1-on-1 consultations and group consultations compared to telehealth consultations (88.9% vs 82.9% vs 61.8%, P < .001). | 4005CREMIN Et al. Conclusion:In a prospective clinic-based cohort of patients with PDAC referred for testing irrespective of family history, germline PV were detected in 14.1%. PV in ATM accounted for half of all PVs and were significantly associated with PDAC.These findings support recent guidelines and will guide future service planning in this population. K E Y W O R D Sgenetic consultation, hereditary cancer, pancreatic ductal adenocarcinoma
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.