We monitored the radial distribution of sap flux density (v; g H2O m(-2) s(-1)) in the sapwood of six plantation-grown Pinus taeda L. trees during wet and dry soil periods. Mean basal diameter of the 32-year-old trees was 33.3 cm. For all trees, the radial distribution of sap flow in the base of the stem (i.e., radial profile) was Gaussian in shape. Sap flow occurred maximally in the outer 4 cm of sapwood, comprising 50-60% of total stem flow (F), and decreased toward the center, with the innermost 4 cm of sapwood (11-15 cm) comprising less than 10% of F. The percent of flow occurring in the outer 4 cm of sapwood was stable with time (average CV < 10%); however, the percentage of flow occurring in the remaining sapwood was more variable over time (average CV > 40%). Diurnally, the radial profile changed predictably with time and with total stem flow. Seasonally, the radial profile became less steep as the soil water content (theta) declined from 0.38 to 0.21. Throughout the season, daytime sap flow also decreased as theta decreased; however, nighttime sap flow (an estimate of stored water use) remained relatively constant. As a result, the percentage of stored water use increased as theta declined. Time series analysis of 15-min values of F, theta, photosynthetically active radiation (PAR) and vapor pressure deficit (D) showed that F lagged behind D by 0-15 min and behind PAR by 15-30 min. Diurnally, the relationship between F and D was much stronger than the relationship between F and PAR, whereas no relationship was found between F and theta. An autoregressive moving average (ARIMA) model estimated that 97% of the variability in F could be predicted by D alone. Although total sap flow in all trees responded similarly to D, we show that the radial distribution of sap flow comprising total flow could change temporally, both on daily and seasonal scales.
Current theories of plant-herbivore interactions suggest that plants may differ in palatability to herbivores as a function of abiotic stress; however, studies of these theories have produced mixed results. We compared the palatability of eight common salt marsh plants that occur across elevational and salinity stress gradients to six common leaf-chewing herbivores to determine patterns of plant palatability. The palatability of every plant species varied across gradients of abiotic stress in at least one comparison, and over half of the comparisons indicated significant differences in palatability. The direction of the preferences, however, was dependent on the plant and herbivore species studied, suggesting that different types of stress affect plants in different ways, that different plant species respond differently to stress, and that different herbivore species measure plant quality in different ways. Overall, 51% of the variation in the strength of the feeding preferences could be explained by a knowledge of the strength of the stress gradient and the type of gradient, plant and herbivore studied. This suggests that the prospects are good for a more complex, conditional theory of plant stress and herbivore feeding preferences that is based on a mechanistic understanding of plant physiology and the factors underlying herbivore feeding preferences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.