Although there is consensus that Neandertal craniofacial morphology is unique in the genus Homo, debate continues regarding the precise anatomical basis for this uniqueness and the evolutionary mechanism that produced it. In recent years, biomechanical explanations have received the most attention. Some proponents of the "anterior dental loading hypothesis" (ADLH) maintain that Neandertal facial anatomy was an adaptive response to high-magnitude forces resulting from both masticatory and paramasticatory activity. However, while many have argued that Neandertal facial structure was well-adapted to dissipate heavy occlusal loads, few have considered, much less demonstrated, the ability of the Neandertal masticatory system to generate these presumably heavy loads. In fact, the Neandertal masticatory configuration has often been simultaneously interpreted as being disadvantageous for producing large bite forces. With rare exception, analyses that attempted to resolve this conflict were qualitative rather than quantitative. Using a three-dimensional digitizer, we recorded a sequence of points on the cranium and associated mandible of the Amud 1, La Chapelle-aux-Saints, and La Ferrassie 1 Neandertals, and a sample of early and recent modern humans (n = 29), including a subsample with heavy dental wear and documented paramasticatory behavior. From these points, we calculated measures of force-production capability (i.e., magnitudes of muscle force, bite force, and condylar reaction force), measures of force production efficiency (i.e., ratios of force magnitudes and muscle mechanical advantages), and a measure of overall size (i.e., the geometric mean of all linear craniofacial measurements taken). In contrast to the expectations set forth by the ADLH, the primary dichotomy in force-production capability was not between Neandertal and modern specimens, but rather between large (robust) and small (gracile) specimens overall. Our results further suggest that the masticatory system in the genus Homo scales such that a certain level of force-production efficiency is maintained across a considerable range of size and robusticity. Natural selection was probably not acting on Neandertal facial architecture in terms of peak bite force dissipation, but rather on large tooth size to better resist wear and abrasion from submaximal (but more frequent) biting and grinding forces. We conclude that masticatory biomechanical adaptation does not underlie variation in the facial skeleton of later Pleistocene Homo in general, and that continued exploration of alternative explanations for Neandertal facial architecture (e.g., climatic, respiratory, developmental, and/or stochastic mechanisms) seems warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.