A novel paralytic mutant, nubian, was identified in a behavioral screen for conditional temperature-sensitive seizure mutants in Drosophila melanogaster. nubian mutants display reduced lifespan, abnormal motor behavior, altered synaptic structure, and defective neurotransmitter release. The nubian mutant disrupts phosphoglycerate kinase (PGK), an enzyme required for ATP generation in the terminal stage of the glycolytic pathway. Consistent with altered ATP generation in nubian animals, brain extracts show a threefold reduction in resting ATP levels compared with controls. Microarray analysis of nubian mutants reveals altered transcription of genes implicated in glucose and lipid metabolism. Disruption of ATP generation in nubian animals is accompanied by temperature-dependent defects in neuronal activity, with initial seizure activity, followed by an activity-dependent loss of synaptic transmission. nubian mutants also display structural defects at the synapse, with larger varicosity size but normal varicosity number, indicating that these synaptic parameters are regulated independently. Both exocytotic (NSF) and endocytotic (dynamin) ATPase/GTPase activity are required for normal synaptic transmission. Biochemical and physiological analyses indicate that synaptic defects in nubian animals are secondary to defective endocytosis, suggesting that endocytotic pathways may be generally more sensitive to altered ATP levels than those used for exocytosis. Alterations in ATP metabolism likely disrupt similar pathways in humans, because PGK deficiency is associated with mental retardation, seizures, and exercise intolerance. Given the behavioral similarities between disruptions of PGK function in Drosophila and humans, the analysis of nubian animals may reveal conserved neuronal responses associated with altered ATP generation within the brain.
BackgroundFolate, vitamin B-12, and vitamin B-6 are essential nutritional components in one-carbon metabolism and are required for methylation capacity. The availability of these vitamins may therefore modify methylation of phosphatidylethanolamine (PE) to phosphatidylcholine (PC) by PE-N-methyltransferase (PEMT) in the liver. It has been suggested that PC synthesis by PEMT plays an important role in the transport of polyunsaturated fatty acids (PUFAs) like docosahexaenoic acid (DHA) from the liver to plasma and possibly other tissues. We hypothesized that if B-vitamin supplementation enhances PEMT activity, then supplementation could also increase the concentration of plasma levels of PUFAs such as DHA. To test this hypothesis, we determined the effect of varying the combined dietary intake of these three B-vitamins on plasma DHA concentration in rats.MethodsIn a first experiment, plasma DHA and plasma homocysteine concentrations were measured in rats that had consumed a B-vitamin-poor diet for 4 weeks after which they were either continued on the B-vitamin-poor diet or switched to a B-vitamin-enriched diet for another 4 weeks. In a second experiment, plasma DHA and plasma homocysteine concentrations were measured in rats after feeding them one of four diets with varying levels of B-vitamins for 4 weeks. The diets provided 0% (poor), 100% (normal), 400% (enriched), and 1600% (high) of the laboratory rodent requirements for each of the three B-vitamins.ResultsPlasma DHA concentration was higher in rats fed the B-vitamin-enriched diet than in rats that were continued on the B-vitamin-poor diet (P = 0.005; experiment A). Varying dietary B-vitamin intake from deficient to supra-physiologic resulted in a non-linear dose-dependent trend for increasing plasma DHA (P = 0.027; experiment B). Plasma DHA was lowest in rats consuming the B-vitamin-poor diet (P > 0.05 vs. normal, P < 0.05 vs. enriched and high) and highest in rats consuming the B-vitamin-high diet (P < 0.05 vs. poor and normal, P > 0.05 vs. enriched). B-vitamin deficiency significantly increased plasma total homocysteine but increasing intake above normal did not significantly reduce it. Nevertheless, in both experiments plasma DHA was inversely correlated with plasma total homocysteine.ConclusionThese data demonstrate that dietary folate, vitamin B-12, and vitamin B-6 intake can influence plasma concentration of DHA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.