Different types of consent are used to obtain human biospecimens for future research. This variation has resulted in confusion regarding what research is permitted, inadvertent constraints on future research, and research proceeding without consent. The NIH Clinical Center’s Department of Bioethics held a workshop to consider the ethical acceptability of addressing these concerns by using broad consent for future research on stored biospecimens. Multiple bioethics scholars, who have written on these issues, discussed the reasons for consent, the range of consent strategies, gaps in our understanding, and concluded with a proposal for broad initial consent coupled with oversight and, when feasible, ongoing provision of information to donors. The manuscript describes areas of agreement as well as areas that need more research and dialogue. Given recent proposed changes to the Common Rule, and new guidance regarding storing and sharing data and samples, this is an important and timely topic.
Guidelines are limited for genetic testing for prostate cancer (PCA). The goal of this conference was to develop an expert consensus-driven working framework for comprehensive genetic evaluation of inherited PCA in the multigene testing era addressing genetic counseling, testing, and genetically informed management. MethodsAn expert consensus conference was convened including key stakeholders to address genetic counseling and testing, PCA screening, and management informed by evidence review. ResultsConsensus was strong that patients should engage in shared decision making for genetic testing. There was strong consensus to test HOXB13 for suspected hereditary PCA, BRCA1/2 for suspected hereditary breast and ovarian cancer, and DNA mismatch repair genes for suspected Lynch syndrome. There was strong consensus to factor BRCA2 mutations into PCA screening discussions. BRCA2 achieved moderate consensus for factoring into early-stage management discussion, with stronger consensus in high-risk/advanced and metastatic setting. Agreement was moderate to test all men with metastatic castration-resistant PCA, regardless of family history, with stronger agreement to test BRCA1/2 and moderate agreement to test ATM to inform prognosis and targeted therapy. ConclusionTo our knowledge, this is the first comprehensive, multidisciplinary consensus statement to address a genetic evaluation framework for inherited PCA in the multigene testing era. Future research should focus on developing a working definition of familial PCA for clinical genetic testing, expanding understanding of genetic contribution to aggressive PCA, exploring clinical use of genetic testing for PCA management, genetic testing of African American males, and addressing the value framework of genetic evaluation and testing men at risk for PCA-a clinically heterogeneous disease. J Clin Oncol 36:414-424. © 2017 by American Society of Clinical Oncology INTRODUCTIONProstate cancer (PCA) is the third leading cause of cancer-related death in US men, accounting for 26,730 deaths in 2017. 1 There is increasing evidence that PCA has substantial inherited predisposition, 2,3 with higher risks conferred by BRCA2 and BRCA1 (associated with hereditary breast and ovarian cancer [HBOC] syndrome), and HOXB13 (associated with hereditary prostate cancer [HPC]). Furthermore, BRCA2 mutations have been associated with poor PCA-specific outcomes. [9][10][11][12][13] There is also emerging evidence of the link between PCA Author affiliations and support information (if applicable) appear at the end of this article.Published at jco.org on December 13, 2017. and DNA mismatch repair (MMR) gene mutations (accounting for Lynch syndrome [LS]). [25][26][27][28][29][30] Furthermore, inherited genetic mutations are being uncovered in up to 12% of men with metastatic PCA, primarily in DNA repair genes such as BRCA1, BRCA2, and ATM, 31,32 with improved clinical outcomes by specific targeted agents. 33,34 Identifying genetic mutations of inherited PCA, therefore, has implications for cancer...
Commentators are concerned that broad consent may not provide biospecimen donors with sufficient information regarding possible future research uses of their tissue. We surveyed with interviews 302 cancer patients who had recently provided broad consent at four diverse academic medical centers. The majority of donors believed that the consent form provided them with sufficient information regarding future possible uses of their biospecimens. Donors expressed very positive views regarding tissue donation in general and endorsed the use of their biospecimens in future research across a wide range of contexts. Concerns regarding future uses were limited to for-profit research and research by investigators in other countries. These results support the use of broad consent to store and use biological samples in future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.