The phase behavior of suspensions of colloidal hard tetragonal parallelepipeds ("TPs") (also known as rectangular nanorods or nanobars) was studied by using Monte Carlo simulations to gain a detailed understanding of the effect of flat-faceted particles on inducing regular local packing and long range structural order. A TP particle has orthogonal sides with lengths a, b, and c, such that a=b and its aspect ratio is r=c/a. The phase diagram for such perfect TPs was mapped out for particle aspect ratios ranging from 0.125 to 5.0. Equation of state curves, order parameters, particle distribution functions, and snapshots were used to analyze the resulting phases. Given the athermal nature of the systems studied, it is the interplay of purely entropic forces that drives phase transitions amongst the structures observed that include crystal, columnar, smectic, parquet, and isotropic phases. In the parquet phase that occurs for 0.54
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.