Background. Understanding the total cavopulmonary connection (TCPC) hemodynamics may lead to improved surgical procedures which result in a more efficient modified circulation. Reduced energy loss will translate to less work for the single ventricle and although uni ventricular physiology is complex, this improvement could contribute to improved postoperative outcomes. Therefore to conserve energy, one surgical goal is opti mization of the TCPC geometry. In line with this goal, this study investigated whether addition of caval curva ture or flaring at the connection conserves energy.Methods. TCPC models were made varying the curva ture of the caval inlet or by flaring the anastomosis. Steady flow pressure measurements were made to calcu late the power loss attributed to each connection design over a range of pulmonary flow splits (70:30 to 30:70). Particle flow visualization was performed for each design and was qualitatively compared to the power losses.Results. Results indicate that curving the cavae toward
Previous in vitro studies have shown that total cavopulmonary connection (TCPC) models incorporating offset between the vena cavae are energetically more efficient than those without offsets. In this study, the impact of reducing simplifying assumptions, thereby producing more physiologic models, was investigated by computational fluid dynamics (CFD) and particle flow visualization experiments. Two models were constructed based on angiography measurements. The first model retained planar arrangement of all vessels involved in the TCPC but incorporated physiologic vessel diameters. The second model consisted of constant-diameter vessels with non-planar vascular features. CFD and in vitro experiments were used to study flow patterns and energy losses within each model. Energy losses were determined using three methods: theoretical control volume, simplified control volume, and velocity gradient based dissipation. Results were compared to a simplified model control. Energy loss in the model with physiologically more accurate vessel diameters was 150% greater than the simplified model. The model with nonplanar features produced an asymmetric flow field with energy losses approximately 10% higher than simplified model losses. With the velocity gradient based dissipation technique, the map of energy dissipation was plotted revealing that most of the energy was dissipated near the pulmonary artery walls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.