Glycoproteins are a functionally important class of biomolecules for which structural elucidation presents a challenge. Fragmentation of N-glycosylated peptides, employing collisionally activated dissociation, typically yields product ions that result from dissociation at glycosidic bonds, with little occurrence of dissociation at peptide backbone sites. We have applied two dissociation techniques, electron capture dissociation (ECD) and infrared multiphoton dissociation (IRMPD), in a 7-T Fourier transform ion cyclotron resonance mass spectrometer, in the investigation of an N-glycosylated peptide from an unfractionated tryptic digest of the lectin of the coral tree, Erythrina corallodendron. ECD provided c and z. ions derived from the peptide backbone, with no observed loss of sugars. Cleavage at 11 of 15 backbone amine bonds was observed. The lack of cleavage at sites located close to the glycosylated asparagine residue may result from steric blocking by the glycan. IRMPD provided abundant fragment ions, primarily through dissociation at glycosidic linkages. The monosaccharide composition and the presence of three glycan branch sites could be determined from the IRMPD fragments. The two types of spectra, obtained with the same instrument, thus provide complementary structural information about the glycopeptide. The current result extends the applicability of ECD for glycopeptide analysis to N-glycosylated peptides and to peptides containing branched, highly substituted glycans.
By comparing the CSF proteome between Alzheimer disease (AD) patients and controls it may be possible to identify proteins that play a role in the disease process and thus to study the pathogenesis of AD. We used mini-gel technology in a two-dimensional electrophoresis procedure, sensitive SYPRO Ruby staining and mass spectrometry for clinical screening of disease-influenced CSF proteins in 15 AD patients and 12 controls. The levels of six proteins and their isoforms, including proapolipoprotein, apolipoprotein E, beta-2 microglobulin, retinol-binding protein, transthyretin, and ubiquitin, were significantly altered in CSF of AD patients. The most prominently altered proteins were the apolipoproteins, especially proapolipoprotein.
Initiation and maintenance of several cancers including glioblastoma (GBM) may be driven by a small subset of cells called cancer stem cells (CSCs). CSCs may provide a repository of cells in tumor cell populations that are refractory to chemotherapeutic agents developed for the treatment of tumors. STAT3 is a key transcription factor associated with regulation of multiple stem cell types. Recently, a novel autocrine loop (IL-6/STAT3/HIF1alpha) has been observed in multiple tumor types (pancreatic, prostate, lung, and colon). The objective of this study was to probe perturbations of this loop in a glioblastoma cancer stem cell line (GSC11) derived from a human tumor by use of a JAK2/STAT3 phosphorylation inhibitor (WP1193), IL-6 stimulation, and hypoxia. A quantitative phosphoproteomic approach that employed phosphoprotein enrichment, chemical tagging with isobaric tags, phosphopeptide enrichment, and tandem mass spectrometry in a high-resolution instrument was applied. A total of 3414 proteins were identified in this study. A rapid Western blotting technique (<1 h) was used to confirm alterations in key protein expression and phosphorylation levels observed in the mass spectrometric experiments. About 10% of the phosphoproteins were linked to the IL-6 pathway, and the majority of remaining proteins could be assigned to other interlinked networks. By multiple comparisons between the sample conditions, we observed expected changes and gained novel insights into the contribution of each factor to the IL6/STAT3/HIF1alpha autocrine loop and the CSC response to perturbations by hypoxia, inhibition of STAT3 phosphorylation, and IL-6 stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.