Digoxin poisoning still remains a common cause of morbidity and mortality. Fortunately, digoxin-specific Fab fragments are commercially available as an antidote. However, these Fab fragments are several thousand dollars per vial. There is a standardized formula to calculate appropriate Fab fragment dosage based on the serum digoxin concentration. This can greatly reduce the amount of Fab fragment administered. There is also an empiric dosing guideline recommending 6-10 vials be given; however, this may result in higher amounts of Fab fragments being administered than required. We performed this study to assess the amounts of digoxin-specific Fab fragments administered in the treatment of digoxin poisonings recorded in a poison control system database from January 1, 2000, to December 31, 2009, in which digoxin serum concentrations were available. This was a retrospective study of 278 patients, 107 with acute poisonings (group A) and 171 following chronic poisoning (group B). In group A, the calculated Fab dose was higher than the calculated dose based on available concentrations in 39 (36%) of group A and 15 (9%) of group B patients. The average wholesale price cost of the excessive dosages ranged from $4818 to as high as $50,589 per patient. Our data suggests that clinician education on digoxin poisoning and the use of the standardized formula to calculate the Fab dose may decrease over utilization and decrease costs associated with the administration of digoxin-specific Fab fragments in the treatment of digoxin poisonings.
Gardens play a key role in the definition of the cultural landscape since they reflect the culture, identity, and history of a people. They also contribute to the ecological balance of the city. Despite the fact that gardens have an historic and social value, they are not protected as much as the rest of the existing heritage, such as architecture and archaeological sites. While methods of built-heritage mapping and monitoring are increasing and constantly improving to reduce built-heritage loss and the severe impact of natural disasters, the documentation and survey techniques for gardens are often antiquated. In addition, inventories are typically made by non-updated/updateable reports, and they are rarely in digital format or in 3D. This paper presents the results of a comprehensive study on the latest technology for laser scanning in gardens. We compared static terrestrial laser scanning and mobile laser scanning point clouds generated by the Focus 3D S120 and the Leica BLK2GO, respectively, to evaluate their quality for documentation, estimate tree attributes, and terrain morphology. The evaluation is based on visual observation, C2C comparisons, and terrain information extraction capabilities, i.e., M3C2 comparisons for topography, DTM generation, and contour lines. Both methods produced useful outcomes for the scope of the research within their limitations. Terrestrial laser scanning is still the method that offers accurate point clouds with a higher point density and less noise. However, the more recent mobile laser scanning is able to survey in less time, significantly reducing the costs for site activities, data post-production, and registration. Both methods have their own restrictions that are amplified by site features, mainly the lack of plans for the geometric alignment of scans and the simultaneous location and mapping (SLAM) process. We offer a critical description of the issues related to the functionality of the two sensors, such as the operative range limit, light dependency, scanning time, point cloud completeness and size, and noise level.
Gardens play a key role in the definition of the cultural landscape since they reflect the culture, identity and history of a people. They also contribute to the ecological balance of the city. Despite gardens have an historic and social value, they are not protected as much as the rest of the existing heritage, like architecture and archaeological sites. While methods of built-heritage mapping and monitoring are increasing and constantly improving to reduce built-heritage loss and the severe impact of natural disasters, the documentation and survey techniques for gardens are often antiquated, inventories are typically made by non-updated/updatable reports, and rarely they are on digital format and in 3D. This paper presents the preliminary results of a study on latest technology for gardens laser scanning. We compared static Terrestrial Laser Scanning and Mobile Laser Scanning point clouds, to evaluate their quality for documentation and the estimation of the tree attributes. The evaluation is based on visual observation and graphic comparison of the two point clouds acquired in different instances. Both methods produced useful outcomes for the research scope within their limitations. Terrestrial Laser Scanning is still the method that offers more accurate point clouds with a higher point density and less noise level. However, the more recent Mobile Laser Scanning is able to survey in less time, significantly reducing the costs for site activities, data post-production and registration. Both methods have their own restrictions that are amplified by site features, mainly the lack of plans for the geometric alignment of scans and for the Simultaneous Location and Mapping (SLAM) process. We also offer the results of a comparison of the functional range of the two machines, as well as for a comparison of their terrain information extraction capabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.