SUMMARY Tumor maintenance relies on continued activity of driver oncogenes, although their rate-limiting role is highly context dependent. Oncogenic Kras mutation is the signature event in pancreatic ductal adenocarcinoma (PDAC), serving a critical role in tumor initiation. Here, an inducible KrasG12D-driven PDAC mouse model establishes that advanced PDAC remains strictly dependent on KrasG12D expression. Transcriptome and metabolomic analyses indicate that KrasG12D serves a vital role in controlling tumor metabolism through stimulation of glucose uptake and channeling of glucose intermediates into the hexosamine biosynthesis and pentose phosphate pathways (PPP). These studies also reveal that oncogenic Kras promotes ribose biogenesis. Unlike canonical models, we demonstrate that KrasG12D drives glycolysis intermediates into the nonoxidative PPP, thereby decoupling ribose biogenesis from NADP/NADPH-mediated redox control. Together, this work provides in vivo mechanistic insights into how oncogenic Kras promotes metabolic reprogramming in native tumors and illuminates potential metabolic targets that can be exploited for therapeutic benefit in PDAC.
SUMMARY Activating mutations in KRAS are among the most frequent events in diverse human carcinomas and are particularly prominent in human pancreatic ductal adenocarcinoma (PDAC). An inducible KrasG12D-driven mouse model of PDAC has established a critical role for sustained KrasG12D expression in tumor maintenance, providing a model to determine the potential for, and the underlying mechanisms of, KrasG12D–independent PDAC recurrence. Here we show that some tumors undergo spontaneous relapse and are devoid of KrasG12D expression and downstream canonical MAPK signaling and instead acquire amplification and overexpression of the transcriptional co-activator Yap1. Functional studies established the role of Yap1 and the transcriptional factor Tead2 in driving KrasG12D–independent tumor maintenance. The Yap1/Tead2 complex acts cooperatively with E2F transcription factors to activate a cell cycle and DNA replication program. Our studies, along with corroborating evidence from human PDAC models, portend a novel mechanism of escape from oncogenic Kras addiction in PDAC.
While the peptide and protein therapeutic market has developed significantly in the past decades, delivery has limited their use. Although oral delivery is preferred, most are currently delivered intravenously or subcutaneously due to degradation and limited absorption in the gastrointestinal tract. Therefore, absorption enhancers, enzyme inhibitors, carrier systems and stability enhancers are being studied to facilitate oral peptide delivery. Additionally, transdermal peptide delivery avoids the issues of the gastrointestinal tract, but also faces absorption limitations. Due to proteases, opsonization and agglutination, free peptides are not systemically stable without modifications. This review discusses oral and transdermal peptide drug delivery, focusing on barriers and solutions to absorption and stability issues. Methods to increase systemic stability and site-specific delivery are also discussed.
, Melissa Yssel, MB ChB, FC Path(SA) Chem 139, and Wendy M. Zakowicz, BS 79 Purpose: To achieve clinical validation of cutoff values for newborn screening by tandem mass spectrometry through a worldwide collaborative effort. Methods: Cumulative percentiles of amino acids and acylcarnitines in dried blood spots of approximately 25-30 million normal newborns and 10,742 deidentified true positive cases are compared to assign clinical significance, which is achieved when the median of a disorder range is, and usually markedly outside, either the 99th or the 1st percentile of the normal population. The cutoff target ranges of analytes and ratios are then defined as the interval between selected percentiles of the two populations. When overlaps occur, adjustments are made to maximize sensitivity and specificity taking all available factors into consideration.
Pancreatic ductal adenocarcinoma (PDAC) initiation is driven by oncogenic KRAS mutation and disease progression is associated with frequent loss of tumor suppressors. In this study, human PDAC genome analyses revealed frequent deletion of the PTEN gene as well as loss of expression in primary tumor specimens. A potential role for PTEN as a haploinsufficient tumor suppressor is further supported by mouse genetic studies. The mouse PDAC driven by oncogenic Kras mutation and Pten deficiency also sustains spontaneous extinction of Ink4a expression and shows pro-metastatic capacity. Unbiased transcriptomic analyses established that combined oncogenic Kras and Pten loss promotes marked NF-κB activation and its cytokine network with accompanying robust stromal activation and immune cell infiltration with known tumor promoting properties. Thus, PTEN/PI3K pathway alteration is a common event in PDAC development and functions in part to strongly activate the NF-κB network which may serve to shape the PDAC tumor microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.