The mechanisms by which commensal bacteria suppress inflammatory signalling in the gut are still unclear. Here, we present a cellular mechanism whereby the polarity of intestinal epithelial cells (IECs) has a major role in colonic homeostasis. TLR9 activation through apical and basolateral surface domains have distinct transcriptional responses, evident by NF-kappaB activation and cDNA microarray analysis. Whereas basolateral TLR9 signals IkappaBalpha degradation and activation of the NF-kappaB pathway, apical TLR9 stimulation invokes a unique response in which ubiquitinated IkappaB accumulates in the cytoplasm preventing NF-kappaB activation. Furthermore, apical TLR9 stimulation confers intracellular tolerance to subsequent TLR challenges. IECs in TLR9-deficient mice, when compared with wild-type and TLR2-deficient mice, display a lower NF-kappaB activation threshold and these mice are highly susceptible to experimental colitis. Our data provide a case for organ-specific innate immunity in which TLR expression in polarized IECs has uniquely evolved to maintain colonic homeostasis and regulate tolerance and inflammation.
TLR signaling is essential for intestinal tumorigenesis in Apcmin/+ mice, but the mechanisms by which this protein enhances tumor growth are unknown. Here we show that the Microflora-MyD88-ERK signaling in intestinal epithelial cells (IEC) promotes tumorigenesis by increasing the stability of the c-myc oncoprotein. Activation of ERK phosphorylates c-myc that prevents its ubiquitination and its subsequent proteasomal degradation. Accordingly, Apcmin/+/Myd88-/- mice display reduced levels of pERK and c-myc proteins in IEC, and a low incidence of IEC tumors. A MyD88-independent activation of ERK by EGF increases pERK and c-myc levels and restores the Min phenotype in Apcmin/+/Myd88-/- mice. Administration of an ERK inhibitor suppressed intestinal tumorigenesis in EGF-treated Apcmin/+/Myd88-/- and in Apcmin/+ mice and increased their survival. Our data reveal a new facet of oncogene-environment interaction, where the microflora-induced TLR activation regulates the expression of an oncogene that leads to IEC tumor growth in a susceptible host.
We explored the physiological role of conventional dendritic cells (cDCs) in acute colitis induced by a single cycle of dextran sodium sulfate administration. Depending on their mode of activation and independently of T cells, cDCs can enhance or attenuate the severity of dextran sodium sulfate-induced colitis. The latter beneficial effect was achieved, in part, by IFN-1 induced by Toll-like receptor 9-activated cDCs. IFN-1 inhibits colonic inflammation by regulating neutrophil and monocyte trafficking to the inflamed colon and restraining the inflammatory products of tissue macrophages. These data highlight a novel role of cDCs in the regulation of other innate immune cells and position them as major players in acute colonic inflammation.colitis ͉ Toll-like receptor 9 ͉ IFN-1
These data indicate that certain luminal bacterial products support colonic homeostasis via activation of epithelial Toll-like receptors. The role of epithelial Toll-like receptor expression and activation in the pathogenesis of human inflammatory bowel disease is yet to be explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.