Recent advances in sequencing technology allow data on the human genome to be generated more quickly and in greater detail than ever before. Such detail includes findings that may be of significance to the health of the research participant involved. Although research studies generally do not feed back information on clinically significant findings (CSFs) to participants, this stance is increasingly being questioned. There may be difficulties and risks in feeding clinically significant information back to research participants, however, the UK10K consortium sought to address these by creating a detailed management pathway. This was not intended to create any obligation upon the researchers to feed back any CSFs they discovered. Instead, it provides a mechanism to ensure that any such findings can be passed on to the participant where appropriate. This paper describes this mechanism and the specific criteria, which must be fulfilled in order for a finding and participant to qualify for feedback. This mechanism could be used by future research consortia, and may also assist in the development of sound principles for dealing with CSFs.
This paper outlines the history behind open access principles and describes the development of a managed access data-sharing process for the UK10K Project, currently Britain’s largest genomic sequencing consortium (2010 to 2013). Funded by the Wellcome Trust, the purpose of UK10K was two-fold: to investigate how low-frequency and rare genetic variants contribute to human disease, and to provide an enduring data resource for future research into human genetics. In this paper, we discuss the challenge of reconciling data-sharing principles with the practicalities of delivering a sequencing project of UK10K’s scope and magnitude. We describe the development of a sustainable, easy-to-use managed access system that allowed rapid access to UK10K data, while protecting the interests of participants and data generators alike. Specifically, we focus in depth on the three key issues that emerge in the data pipeline: study recruitment, data release and data access.
Availability of and access to data and biosamples are essential in medical and translational research, where their reuse and repurposing by the wider research community can maximize their value and accelerate discovery. However, sharing human-related data or samples is complicated by ethical, legal, and social sensitivities. The specific ethical and legal requirements linked to sensitive data are often unfamiliar to life science researchers who, faced with vast amounts of complex, fragmented, and sometimes even contradictory information, may not feel competent to navigate through it. In this case, the impulse may be not to share the data in order to safeguard against unintentional misuse. Consequently, helping data providers to identify relevant ethical and legal requirements and how they might address them is an essential and frequently neglected step in removing possible hurdles to data and sample sharing in the life sciences. Here, we describe the complex regulatory context and discuss relevant online tools—one which the authors co-developed—targeted at assisting providers of sensitive data or biosamples with ethical and legal questions. The main results are (1) that the different approaches of the tools assume different user needs and prior knowledge of ethical and legal requirements, affecting how a service is designed and its usefulness, (2) that there is much potential for collaboration between tool providers, and (3) that enriched annotations of services (e.g., update status, completeness of information, and disclaimers) would increase their value and facilitate quick assessment by users. Further, there is still work to do with respect to providing researchers using sensitive data or samples with truly ‘useful’ tools that do not require pre-existing, in-depth knowledge of legal and ethical requirements or time to delve into the details. Ultimately, separate resources, maintained by experts familiar with the respective fields of research, may be needed while—in the longer term—harmonization and increase in ease of use will be very desirable.
Innovations in information technologies have facilitated the development of new styles of research networks and forms of governance. This is evident in genomics where increasingly, research is carried out by large, interdisciplinary consortia focussing on a specific research endeavour. The UK10K project is an example of a human genomics consortium funded to provide insights into the genomics of rare conditions, and establish a community resource from generated sequence data. To achieve its objectives according to the agreed timetable, the UK10K project established an internal governance system to expedite the research and to deal with the complex issues that arose. The project’s governance structure exemplifies a new form of network governance called ‘pop-up’ governance. ‘Pop-up’ because: it was put together quickly, existed for a specific period, was designed for a specific purpose, and was dismantled easily on project completion. In this paper, we use UK10K to describe how ‘pop-up’ governance works on the ground and how relational, hierarchical and contractual governance mechanisms are used in this new form of network governance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.